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Supervisor’s Foreword

It is with the greatest of pleasure that I write the foreword to George Constable’s
Ph.D. thesis. At one level the thesis is a very clear description of a method of
analysing models in population genetics, which I will outline in more detail below.
But on a more general level it should also be very useful as an introduction to those
wishing to understand the formalism of continuous-time stochastic processes. There
are not so many textbooks on this subject, and those which do exist can be tech-
nically quite forbidding. This need not be so—the essential ideas and techniques are
relatively straightforward to understand—and the opening chapters of this thesis
provide an accessible introduction to them.

The main subject of the thesis is the stochastic time-evolution of populations
when the individuals making up the population have a very simple genetic
make-up: they are haploid and the focus is on a single gene which has only two
alleles. The ideas can certainly be extended to more complex systems, but the aim
was to develop techniques to allow models to be analysed, and testing them on the
simplest situations to start with. Attention was also directed to aspects of the models
which have perhaps received less attention than they deserve.

The first of these aspects is the careful specification of the model and its sub-
sequent simplification through the use of a diffusion approximation. Theoretical
physicists tend to take great care in distinguishing between microscopic, meso-
scopic and macroscopic descriptions of the same system, and the specification
of the approximations that are made to go from one level of description to another.
There is less of a tradition of doing this in the context of biological systems. In this
thesis there is a careful separation of the modelling and approximation processes, so
that both the starting point and the nature of the approximations subsequently made
are absolutely clear.

The second, and more substantial, contribution described in the thesis is in the
development of an additional approximation which makes an intractable equation
amenable to analysis. The standard method of specifying a model after the diffusion
approximation has been made goes back to the work of Fisher, but was popularised
by Kimura in the 1950s. It takes the form of a partial differential equation known as
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a Fokker-Planck equation to physicists and as a Kolmogorov forward equation to
those in many other disciplines. In simple situations it can be analysed but if, for
instance, the population is subdivided into islands (or demes, as they are sometimes
called), then this is a partial differential equation in many variables, and as such any
in-depth analysis appears to be almost impossible.

As a consequence in some areas of population genetics, the general equations
governing the dynamics have not been addressed directly, because of their intrac-
tability, and the focus has moved to simpler systems or to those where progress
could be made. This is understandable, but what the work in this thesis shows is that
this is not necessary; a simple approximation is available which reduces a
many-island description to one which is effectively a one-island model, but with
effective parameters. The resulting Fokker-Planck equation can now be used to
calculate the probability that a particular allele becomes fixed, how long this will
take on average or what the nature of the stationary probability distribution of
alleles is. There had been a few previous attempts to do this, but the procedure
outlined here is both more general and easier to understand than previous studies.

The procedure is based on a fast-mode elimination technique. The idea is very
simple and long established in the theory of dynamical systems. Essentially, the
variables in the model are decomposed into a set which decay at different rates,
jλðiÞj�1, i ¼ 1; 2; . . .. It turns out that in many cases of interest there is a ‘gap’
between the smallest jλðiÞj (taken to be jλð1Þj) and all the others. This means that
after quite a short time, compared to the timescales of interest to us, only the mode
characterised by jλð1Þj is left in the model describing the system. This is the ‘slow’
mode—all the other ‘fast’ modes have decayed away and dropped out of the the-
oretical description. What is left is a model with just one degree of freedom, which
can then be analysed systematically.

Of course, although the idea just described seems simple enough, finding a
concrete procedure which works, and which can be turned into a calculational tool,
is not. However, remarkably, a method was found which is both rather straight-
forward to apply and which also gives results in excellent agreement with computer
simulations of the original individual-based (that is, microscopic) model. It results
in a ‘reduced’ model in which the parameters are given in terms of the island sizes,
the scale of migration between the islands, or whatever parameters were present in
the original (full) model. Although I have used the example of subdivided popu-
lations to illustrate the method, it should be more generally applicable to the
reduction of complex population genetics models down to much simpler ones with
just a few effective parameters which are explicitly given in terms of those of the
full model.

I have already mentioned that those looking for an easy-to-understand intro-
duction to the formalism of continuous-time stochastic processes would benefit
from reading this thesis. But I would also hope that it would appeal to theoretical
biologists seeking to extend the scope of problems it can be applied to, to math-
ematicians wanting to make the approach more rigorous, and to theoretical phys-
icists looking for an application of the ideas and techniques of non-equilibrium

viii Supervisor’s Foreword



statistical mechanics. So my hope is that the publication of this thesis will allow a
much wider range of people to appreciate the power of the methodology presented
here, and also enable them to contribute to extending its range of applicability.

Manchester Alan McKane
April 2015
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Abstract

In this thesis, I present two methods of fast variable elimination in stochastic
systems. Their application to models of population dynamics from ecology, epi-
demiology and population genetics, is explored. In each application, care is taken to
develop the models at the microscale, in terms of interactions between individuals.
Such an approach leads to well-defined stochastic systems for finite population
sizes. These systems are then approximated at the mesoscale, and expressed as
stochastic differential equations. It is in this setting that elimination techniques are
developed.

In each model a deterministically stable state is assumed to exist, about which
the system is linearised. The eigenvalues of the system’s Jacobian are used to
identify the existence of a separation of timescales. The fast and slow directions are
then given locally by the associated eigenvectors. These are used as approximations
for the fast and slow directions in the full nonlinear system. The general aim is then
to remove these fast degrees of freedom and thus arrive at an approximate,
reduced-variable description of the dynamics on a slow subspace of the full system.

In the first of the methods introduced, the conditioning method, the noise of the
system is constrained so that it cannot leave the slow subspace. The technique is
applied to an ecological model and a susceptible-exposed-infectious-recovered
epidemiological model, in both instances providing a reduced system which pre-
serves the behaviour of the full model to high precision.

The second method is referred to as the projection matrix method. It isolates the
components of the noise on the slow subspace to provide its reduced description.
The method is applied to a generalised Moran model of population genetics on
islands, between which there is migration. The model is successfully reduced from
a system in as many variables as there are islands, to an effective description in a
single variable. The same methodology is later applied to the Lotka-Volterra
competition model, which is found under certain conditions to behave as a Moran
model. In both cases the agreement between the reduced system and stochastic
simulations of the full model is excellent.
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It is emphasised that the ideas behind both the conditioning and projection
matrix methods are simple, their application systematic, and the results in very good
agreement with simulations for a range of parameter values. When the methods are
compared, however, the projection matrix method is found in general to provide
better results.

xii Abstract



Acknowledgments

Writing this thesis has been a surprisingly enjoyable experience. It would not have
been so without the help and support of those around me.

I would like to offer my most sincere gratitude to my supervisor, Alan McKane,
whose advice on all matters has been invaluable, and whose company I have
thoroughly enjoyed.

I thank Tim Rogers, who by virtue of infectious enthusiasm, tempered by bouts
of cynicism, is a great guy to work with.

Over the past three years I have been lucky enough to be surrounded by people
who are happy to take time out of their day to talk about ideas and clarify thoughts.
In this regard I am grateful to Tobias, Diana, Louise and Luis, as well as the many
who have shared Office 7.26—Alex, Joe, Tommaso, James, Toby, Peter and Cesar.

The funding for this Ph.D. has been provided by a University of Manchester
Engineering and Physical Sciences scholarship, and so I thank the EPS for their
generosity.

Finally, I am indebted to my family, which have been unfailingly supportive—
David and Julie, Deborah and June.

xiii



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Technical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Stochastic Processes and the Markov Assumption . . . . . . . . . 12
2.2 The Master Equation and the Limit of Continuous Time . . . . 13
2.3 The Gillespie Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 The Expansion of the Master Equation . . . . . . . . . . . . . . . . 18
2.5 The Fokker-Planck Equation and Some Useful

Manipulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.1 The Stationary Probability Distribution . . . . . . . . . . 23
2.5.2 First Passage Problems . . . . . . . . . . . . . . . . . . . . . 25

2.6 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . 28
2.7 Dynamical Systems Theory . . . . . . . . . . . . . . . . . . . . . . . . 30
2.8 Fast-Variable Elimination: The Origins

of a Complicated Problem . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.9 The Moran Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.9.1 The Moran Model with Selection . . . . . . . . . . . . . . 38
2.10 Technical Background Overview. . . . . . . . . . . . . . . . . . . . . 41
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 The Conditioning Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Identifying the Deterministic Slow Subspace . . . . . . . . . . . . 46
3.2 Illustrative Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Application: Seasonally Forced Epidemics . . . . . . . . . . . . . . 55

3.4.1 Model Definition and Deterministic Treatment . . . . . 55
3.4.2 Stochastic Treatment Exploiting

the Slow Manifold . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xv

http://dx.doi.org/10.1007/978-3-319-21218-0_1
http://dx.doi.org/10.1007/978-3-319-21218-0_1
http://dx.doi.org/10.1007/978-3-319-21218-0_1#Bib1
http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec2
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec2
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec3
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec3
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec4
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec4
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec5
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec5
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec6
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec6
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec6
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec7
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec7
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec8
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec8
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec9
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec9
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec10
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec10
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec11
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec11
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec11
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec12
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec12
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec13
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec13
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec14
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Sec14
http://dx.doi.org/10.1007/978-3-319-21218-0_2#Bib1
http://dx.doi.org/10.1007/978-3-319-21218-0_3
http://dx.doi.org/10.1007/978-3-319-21218-0_3
http://dx.doi.org/10.1007/978-3-319-21218-0_3#Sec1
http://dx.doi.org/10.1007/978-3-319-21218-0_3#Sec1
http://dx.doi.org/10.1007/978-3-319-21218-0_3#Sec2
http://dx.doi.org/10.1007/978-3-319-21218-0_3#Sec2
http://dx.doi.org/10.1007/978-3-319-21218-0_3#Sec3
http://dx.doi.org/10.1007/978-3-319-21218-0_3#Sec3
http://dx.doi.org/10.1007/978-3-319-21218-0_3#Sec4
http://dx.doi.org/10.1007/978-3-319-21218-0_3#Sec4
http://dx.doi.org/10.1007/978-3-319-21218-0_3#Sec5
http://dx.doi.org/10.1007/978-3-319-21218-0_3#Sec5
http://dx.doi.org/10.1007/978-3-319-21218-0_3#Sec6
http://dx.doi.org/10.1007/978-3-319-21218-0_3#Sec6
http://dx.doi.org/10.1007/978-3-319-21218-0_3#Sec6
http://dx.doi.org/10.1007/978-3-319-21218-0_3#Sec7
http://dx.doi.org/10.1007/978-3-319-21218-0_3#Sec7
http://dx.doi.org/10.1007/978-3-319-21218-0_3#Bib1


4 The Projection Matrix Method . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1 Introduction to the Projection Matrix Method . . . . . . . . . . . . 65
4.2 The Moran Model with Migration . . . . . . . . . . . . . . . . . . . . 67
4.3 The Metapopulation Moran Model . . . . . . . . . . . . . . . . . . . 69

4.3.1 The Metapopulation Moran Model with Selection . . . 72
4.4 The Effective Metapopulation Moran Model. . . . . . . . . . . . . 73

4.4.1 The Case with Selection . . . . . . . . . . . . . . . . . . . . 78
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Analysis of the Reduced Metapopulation Moran Model . . . . . . . . 83
5.1 Analysis—Neutral Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Analysis—Case with Selection . . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 First Order in s . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2.2 Second Order in s . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Estimating the Range of Validity of the Method . . . . . . . . . . 91
5.4 Migration-Selection Balance . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 Hub. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5.1 Hub: S = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.2 Hub with Selection . . . . . . . . . . . . . . . . . . . . . . . . 100

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Further Developments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1 Mutation and the Metapopulation Moran Model . . . . . . . . . . 103
6.2 Comparing the Conditioning and the Projection

Matrix Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2.1 Applying the Methods to a Linear System

with Additive Noise . . . . . . . . . . . . . . . . . . . . . . . 111
6.2.2 Application to Neutral Two-Deme Metapopulation

Moran Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3 Reducing the Lotka-Volterra Model. . . . . . . . . . . . . . . . . . . 116

6.3.1 The Neutral Case . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.2 The Non-neutral Case . . . . . . . . . . . . . . . . . . . . . . 121

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Appendix A: The Conditional and Marginal of a Multivariate
Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Appendix B: Floquet Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Appendix C: Derivation of the Fokker-Planck Equation
for the Metapopulation Moran Model . . . . . . . . . . . . . . 143

xvi Contents

http://dx.doi.org/10.1007/978-3-319-21218-0_4
http://dx.doi.org/10.1007/978-3-319-21218-0_4
http://dx.doi.org/10.1007/978-3-319-21218-0_4#Sec1
http://dx.doi.org/10.1007/978-3-319-21218-0_4#Sec1
http://dx.doi.org/10.1007/978-3-319-21218-0_4#Sec2
http://dx.doi.org/10.1007/978-3-319-21218-0_4#Sec2
http://dx.doi.org/10.1007/978-3-319-21218-0_4#Sec3
http://dx.doi.org/10.1007/978-3-319-21218-0_4#Sec3
http://dx.doi.org/10.1007/978-3-319-21218-0_4#Sec4
http://dx.doi.org/10.1007/978-3-319-21218-0_4#Sec4
http://dx.doi.org/10.1007/978-3-319-21218-0_4#Sec5
http://dx.doi.org/10.1007/978-3-319-21218-0_4#Sec5
http://dx.doi.org/10.1007/978-3-319-21218-0_4#Sec6
http://dx.doi.org/10.1007/978-3-319-21218-0_4#Sec6
http://dx.doi.org/10.1007/978-3-319-21218-0_4#Bib1
http://dx.doi.org/10.1007/978-3-319-21218-0_5
http://dx.doi.org/10.1007/978-3-319-21218-0_5
http://dx.doi.org/10.1007/978-3-319-21218-0_5#Sec1
http://dx.doi.org/10.1007/978-3-319-21218-0_5#Sec1
http://dx.doi.org/10.1007/978-3-319-21218-0_5#Sec2
http://dx.doi.org/10.1007/978-3-319-21218-0_5#Sec2
http://dx.doi.org/10.1007/978-3-319-21218-0_5#Sec3
http://dx.doi.org/10.1007/978-3-319-21218-0_5#Sec3
http://dx.doi.org/10.1007/978-3-319-21218-0_5#Sec4
http://dx.doi.org/10.1007/978-3-319-21218-0_5#Sec4
http://dx.doi.org/10.1007/978-3-319-21218-0_5#Sec5
http://dx.doi.org/10.1007/978-3-319-21218-0_5#Sec5
http://dx.doi.org/10.1007/978-3-319-21218-0_5#Sec6
http://dx.doi.org/10.1007/978-3-319-21218-0_5#Sec6
http://dx.doi.org/10.1007/978-3-319-21218-0_5#Sec7
http://dx.doi.org/10.1007/978-3-319-21218-0_5#Sec7
http://dx.doi.org/10.1007/978-3-319-21218-0_5#Sec8
http://dx.doi.org/10.1007/978-3-319-21218-0_5#Sec8
http://dx.doi.org/10.1007/978-3-319-21218-0_5#Sec9
http://dx.doi.org/10.1007/978-3-319-21218-0_5#Sec9
http://dx.doi.org/10.1007/978-3-319-21218-0_5#Bib1
http://dx.doi.org/10.1007/978-3-319-21218-0_6
http://dx.doi.org/10.1007/978-3-319-21218-0_6
http://dx.doi.org/10.1007/978-3-319-21218-0_6#Sec1
http://dx.doi.org/10.1007/978-3-319-21218-0_6#Sec1
http://dx.doi.org/10.1007/978-3-319-21218-0_6#Sec2
http://dx.doi.org/10.1007/978-3-319-21218-0_6#Sec2
http://dx.doi.org/10.1007/978-3-319-21218-0_6#Sec2
http://dx.doi.org/10.1007/978-3-319-21218-0_6#Sec3
http://dx.doi.org/10.1007/978-3-319-21218-0_6#Sec3
http://dx.doi.org/10.1007/978-3-319-21218-0_6#Sec3
http://dx.doi.org/10.1007/978-3-319-21218-0_6#Sec4
http://dx.doi.org/10.1007/978-3-319-21218-0_6#Sec4
http://dx.doi.org/10.1007/978-3-319-21218-0_6#Sec4
http://dx.doi.org/10.1007/978-3-319-21218-0_6#Sec5
http://dx.doi.org/10.1007/978-3-319-21218-0_6#Sec5
http://dx.doi.org/10.1007/978-3-319-21218-0_6#Sec6
http://dx.doi.org/10.1007/978-3-319-21218-0_6#Sec6
http://dx.doi.org/10.1007/978-3-319-21218-0_6#Sec7
http://dx.doi.org/10.1007/978-3-319-21218-0_6#Sec7
http://dx.doi.org/10.1007/978-3-319-21218-0_6#Bib1
http://dx.doi.org/10.1007/978-3-319-21218-0_7
http://dx.doi.org/10.1007/978-3-319-21218-0_7
http://dx.doi.org/10.1007/978-3-319-21218-0_7#Bib1


Appendix D: Specification of Parameters Used in Figures . . . . . . . . . . 147

Appendix E: Moran Model with Selection: Fixation Time . . . . . . . . . . 151

Appendix F: Calculation of the Metapopulation Moran Model
Dynamics on the Slow Subspace . . . . . . . . . . . . . . . . . . . 155

Appendix G: The Probability of Fixation in the Metapopulation
Moran Model with Selection . . . . . . . . . . . . . . . . . . . . . 159

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Contents xvii



Chapter 1
Introduction

Essentially, all models are wrong, but some are useful.
George Box [3]

Inwhat follows I amgoing to explore how concepts andmathematical tools originally
developedwithin physics can be applied to a variety of other fields. These can include,
but are not limited to, population genetics, evolution, opinion dynamics, epidemiol-
ogy and ecology. This thesis will focus primarily on models with an interpretation in
population genetics, however models with an ecological and epidemiological flavour
will also be explored. With this in mind, let us begin by discussing the questions,
‘what do we mean by a model?’ and ‘what makes a good model?’. The answers to
these questions are by no means unarguable, but rather serve to give the reader an
impression of the philosophy to which I attempt to adhere.

Amodel, in its most general form, is a representation of the real world used to help
better comprehend or predict its behaviour. In order to gain any tractability, these
models feature some degree of abstraction from the real world; the most accurate
model would have a one-to-one correspondence with its real world counterpart, but a
replica is no more easy to understand than the original. The degree of abstraction is a
modelling choice which, to some degree, depends both on the aim of the model and
the degree of knowledge one has about the real system. A large degree of abstraction
is preferable if knowledge of the real system is limited, or if one wishes the model to
be very general. For these reasons, I will be concerned with the quantitative analysis
of abstract models which aim to give a qualitative understanding of the behaviour of
certain systems.

This thesis will deal exclusively with dynamic models which describe the evolu-
tion in time of a system which is characterised by a set of variables. If at some time
t0 the state of the system is described by a vector of variables x(t0), we ask at some
later time t0 + �t how the properties of x(t) have changed. The model is said to be
deterministic if the state of the system at t0 + �t can be determined precisely. If the
system is in state x(t0) at time t0, it will be in a calculable state x(t0 + �t) at time

© Springer International Publishing Switzerland 2015
G.W.A. Constable, Fast Variables in Stochastic Population Dynamics,
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2 1 Introduction

t0 +�t . Such systems are most frequently described by a set of ordinary differential
equations (ODEs) of the following form

d

dt
x = f (x), (1.1)

where the vector-valued function f (x), along with initial conditions x0 = x(t0),
defines the model.

Within physics, the principle of Occam’s razor is ubiquitous in theoretical work.
This philosophy perhaps has its origins in the fact that the physical world has, histor-
ically, been found to obey laws which adhere so closely to their model counterparts
as to make the line between a model and reality appear blurred. However there is also
a more pragmatic factor in constructing simple models, that of gaining an intuitive
grasp on how a system behaves. As eluded to earlier, though a model with more
variables may provide a more accurate representation of its subject, it will also be
harder to understand intuitively. The apotheosis of the interpretability of a mathe-
matical problem comes in the form of an analytic solution. While a far greater range
of mathematical problems can be tackled numerically or through simulation than
analytically, such methods cannot rival the encompassing power of a single equation
that can describe some behaviour of a system.

While physicists in general still hold to an aesthetic desire for simplicity, the last
two hundred years has seen an undermining of the belief that simple models are
sufficient. Among the issues at the core of this subversion have been the practical
intractability and indeterminacy of many variable systems, chaos theory and the
realisation that emergent phenomena can defy naïve interpretation. Together, these
issues in some sense embody the class of problems at the centre of the discipline
known as complex systems.

The first of these problems is encountered while trying to describe the thermo-
dynamic behaviour of gas in terms of its constituent particles, and was tackled by
an approach which came to be known as statistical mechanics [10]. If one wishes to
understand the behaviour of a gas, one may consider the behaviour of each particle
in the gas independently. However, even if we know the exact form of the interac-
tion between the particles and identify the initial conditions of each particle in the
system, we are still left with a formidably complicated system of equations to solve.
The key to progress is in observing that we are not really interested in all the details
that solving the full system would give us; even if we could solve the full set of
equations, the velocity of the 13, 500, 303, 304th particle is superfluous information
that gives us no understanding as to how the collection of particles behaves. If instead
we assume each of the particles is indistinguishable from any other, we can begin to
make statistical inferences about the system. We are then interested in the statistics
of the mass of particles, about which we can make some analytic progress.

The second of the above problems is chaos. The central, powerful observation of
chaos theory is that there exists simple systems (possibly of the form of Eq. (1.1)
in three or more variables) whose behaviour is made essentially unpredictable by a
limited knowledge of the initial conditions [9]. In a chaotic system, two trajectories
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whose initial conditions lie very near one another will evolve in time in an entirely
different manner. In order to accurately predict the trajectory a system would follow,
one would need to know the initial conditions of the system to infinite precision.
Clearly this nullifies the predictive power of the model. In this thesis I will not deal
with this class of system.However, the indeterminacy that arises from this phenomena
is important in motivating the work that follows, in that it highlights the failing of
determinism and points instead towards models where predictability is inherently
limited.

A stochasticmodel is onewhich incorporates inherent unpredictability. In contrast
to a deterministic model, if the state of the system, x(t), is known at some time t0, we
do not know the state of the system at x(t0 + �t). The variable x(t) is a realisation
of a stochastic variable X whose evolution in time cannot be predicted precisely.
The exact way in which systems with stochastic components are modelled is once
again a matter of choice. In this thesis however, I will concentrate on models which
describe the time-evolution of the probability density function (PDF) of the stochastic
variable. The PDF gives the probability that a system is in a state x(t). If the system
is in state x(t0) at t0, rather than ask what state the system is in at time t + �t as
in the deterministic description, given by Eq. (1.1), we ask what the probability of
being in some state x is at time t + �t . However, before we proceed to discuss in
full the details of a dynamic-stochastic model, let us review some important results
and intuitions from probability theory.

Say a fair, six sided die is thrown in the air. In principle, given enough informa-
tion about the initial state of the die (its trajectory, weight, alignment etc.) one could
calculate on exactly what side the die would fall. However, rather than model all of
these parameters in a complicated model, it is common to embody all the dynam-
ical processes in one probabilistic process. With each throw of the die, rather than
determine a definite answer, we allow an equal probability of each of the six results
occurring. What do these probabilities indicate? If we were to take a frequentist
approach, they tells us that if we throw the die an infinite number of times, we would
get each side of the die exactly 1/6th of the time [4]. Letting nx denote the number
of times an event x occurs, and N the total number of trials, the probability p(x) of
x occurring is then

p(x) = lim
N→∞

nx

N
. (1.2)

Equivalently, we could say that if we threw an infinite number of dice, then 1/6th of
them would show each side.

What happens if, quite reasonably, we do not have an infinite collection of dice?
The expected probability of rolling a 3 is 1/6. However, given a finite number of
dice N , one may not (and possibly cannot) achieve this fraction of threes. Instead,
one obtains a sample probability,

p̄(x) = nx

N
, (1.3)
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where the bar indicates that the probability is estimated from a finite sample. The
sample statistics themselves can be understood as coming from an underlying dis-
tribution of potential outcomes. For a large enough sample size, N , one can show
via the central limit theorem [8] that p̄(x) is drawn from an approximately normal
distribution whose mean is p(x), and whose standard deviation is proportional to
1/

√
N . As N tends to infinity, the distribution of samples therefore tends to a delta

function centred on the real probability.
This dice example is extremely simple, featuring no statistical behaviour that

evolves in time. However it does illustrate in a very intuitive way two important
points. The first is that while this modelling approach (replacing mechanics for
probabilities) seems like a drastic simplification, it is in fact a rather successful
approximation (as anyone who has played Monopoly can attest). The second is that,
when dealing with probabilistic systems, an observation or sample of a finite system
will only ever be a single realisation of an array of outcomes. In other words, there is
a noise inherent in finite systems which scales in size approximately like the inverse
square root of the sample size, N−1/2. Such noise is termed intrinsic noise and is the
focus of this thesis.

Let us now consider a biologically motivated dynamical system in which these
statistical properties are exhibited; a growing population. We begin with the nat-
ural assumption that the typical birth and death rates are proportional to the size of
the population, denoted by the continuous variable x , with the parameters λ and μ
denoting the per capita birth and death rates respectively. A seemingly natural way
to model this system is deterministically via the ODE

dx

dt
= (λ − μ)x, (1.4)

which has the familiar solution

x = x0e(λ−μ)t , (1.5)

where x0 is the initial size of the population. The population grows exponentially if
the birth rate is larger than the death rate, and decays exponentially if the converse
is true. All in all this seems like a very reasonable solution. However, in the real
world we know that reproduction is not so simple a process. There may be many
additional factors affecting whether an individual reproduces, such as environment
or physical condition. In addition, a population of organisms in nature is a discrete
quantity whereas the population growth predicted by Eq. (1.5) is continuous. We
therefore choose to model the system in a more sophisticated way, replacing this
continuous population size x with a discrete population size n and redefining λ and
μ as the probability per unit time that a single individual reproduces. In this way, as
with the dice example, we bundle all the mechanics and detail of the problem into
a probabilistic interpretation. We can now describe the probability at some time of
finding the system in a discrete state n [0,∞). It can be shown to be given by [10]
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P1(n, t) = 1

n!

[
dn

dzn

(
μ(z − 1)e(λ−μ)t − λz + μ

λ(z − 1)e(λ−μ)t − λz + μ

)n0]∣∣∣∣∣
z=0

. (1.6)

How can the difference between the results given by Eqs. (1.5) and (1.6) be resolved?
Well, taking the mean of Eq. (1.6) one can show

〈n〉 = n0e(λ−μ)t , (1.7)

where n0 is the initial (discrete) size of the population. The equivalence of Eq. (1.5)
and Eq. (1.7) gives a clear interpretation of the deterministic description; the deter-
ministic trajectory is the average trajectory of an infinite number of realisations of
an equivalent stochastic process (see Fig. 1.1). We can also calculate the coefficient
of variation for the distribution (the standard deviation normalised by the mean),
obtaining

√〈n2〉 − 〈n〉2
〈n〉 = 1√

n0

√
λ + μ

λ − μ

√
1 − e−(λ−μ)t , (1.8)

showing that the relative error scales with the inverse root of the initial size of the
population sample. This situation is not entirely dissimilar to the dice example, in
which we stated that the bigger the sample, the less deviation there was from the
mean (deterministic) behaviour. This is illustrated in Fig. 1.1 and will be shown
more generally in the body of this thesis.

Let us close the discussion of this model by addressing an important question;
what does the stochastic description in Eq. (1.6), with all its complications, really
give us over the naïve deterministic description, Eq. (1.5)? The answer is that it
allows for fundamentally different behaviour. Take the example λ > μ. The deter-
ministic theory predicts that the population strictly increases, however the stochastic

Fig. 1.1 Stochastic simulations of a growingpopulation ingrey overlaidwith themeandeterministic
behaviour given by Eq. (1.7) in red. In both plots λ = 2, μ = 1. Comparison of the figures shows
that the system appears more noisy with a smaller initial condition, n0, consistent with Eq. (1.8)
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description allows for the possibility that the finite population will become extinct.
Setting n = 0 in Eq. (1.6), we find that for long times the probability of extinction is
approximately (μ/λ)n0 . For a small initial population, this is a very relevant effect
which the deterministic theory fails to capture.

When developing dynamic models in physics, this noise arising from finite sam-
pling is typically a special case since the systems under consideration are often so
large as to be assumed infinite. We note that the preceding model with λ = 0 can
be used to study the decay of a radioactive substance, for which the deterministic
description given by Eq. (1.5) is a standard undergraduate result. If one is modelling
systems which are relatively small, the effect of intrinsic noise is non-negligible.
This is typically true when building models of populations of discrete organisms in
a biological or social context. In this setting, the intrinsic noise resulting from the
discrete nature of the system’s constituents is also referred to as demographic noise
or demographic stochasticity [2].

Some of the first stochastic models of populations were constructed by Sewall
Wright and Ronald Fisher with the aim of investigating the process of genetic drift
[6, 13]. Genetic drift is the process by which the genetic composition of a population
changes due solely to randomreproduction events [5]. The stochasticmodel attributed
to them, theWright-Fisher model, in manyways exemplifies how a simplemodel can
lead to a qualitative but informative insights into how a system might behave. The
Moran model is very closely related to the Wright-Fisher model and indeed can be
understood as the Wright-Fisher model with overlapping generations in continuous
time. Since a model of this ilk will be addressed in the body of the thesis, it is perhaps
useful to review its general formulation.

The model consists of a finite population of two types of individual, denoted
type A and B. Within each type, the individuals are assumed to be indistinguishable
from one another. The population is also assumed to be well-mixed; that is, it has
no spatial structure and every individual has an equal probability of interacting with
every other. In this respect the connection to statistical thermodynamics is clear. The
population is fixed such that at all times the total number of individuals of both types
is N . If the number of individuals of type A is denoted n, the state of the system
is then described by this single state variable since the number of type B is simply
N − n. In the discrete-time model, at each point in time two individuals are chosen
from the population, one to reproduce (an exact copy of this individual is made) and
one to die (it is removed from the population) so that the population size is fixed.
The probability of either of these being type A or B is simply the proportion of
each in the population (see Fig. 1.2). In continuous time, T (n′|n) is defined as the
probability per unit time that the system will move from a state n to some other state
n′. For this model there are only two processes that can change the constitution of
the population;
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Fig. 1.2 Left Realisation of the discrete-time Moran model for individuals of types A and B. Right
results from 50 realisations plotted in grey, while their mean is plotted in red. The mean can be seen
to stay approximately at its initial value

T (n + 1|n) =

Aborn/Bdies︷ ︸︸ ︷( n

N

)(
N − n

N − 1

)

T (n − 1|n) =
(

N − n

N

) (
n

N − 1

)
︸ ︷︷ ︸

Bborn/Adies

.

(1.9)

Such a model is referred to as a neutral model in population genetics, since neither
type is favoured over the other [11]. While this model cannot be easily solved to
give a solution of the form of Eq. (1.6), certain properties of the distribution can
be straightforwardly calculated. Most interestingly, the mean of the distribution is
given by

〈n〉 = n0. (1.10)

It does not vary in time, but simply maintains its initial value. This is because for any
given state, the probability of type A increasing is the same as of it decreasing; one
picks A to reproduce and B to diewith the same probability of picking B to reproduce
and A to die. The ensemble average thus remains unchanged so that a deterministic
description would predict no dynamics at all. Simulation of the stochastic process
reveals of course that the system does evolve in time, and one can intuitively see that
at infinite times a particular realisation of the system dynamics must end in either
state n = 0 or n = N , from which it cannot return. Here, a deterministic description
not only fails to capture some, but all of the dynamical behaviour. In problems such
as this a stochastic treatment is clearly essential.

The stochastic nature of the Moran model adds to its complexity, however it
remains a one-dimensional systemoverwhich one can gain some analytic tractability.
What happens if the model we wish to deal with is more complicated? It is possibly
only a slight exaggeration to say that of all themathematical models we can dream of,
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there are only two kinds which are straightforward to solve: those which are linear,
and those which are one-dimensional. This aphorism holds equally for stochastic
dynamical systems as it does for their deterministic counterparts.

Given a nonlinear set of coupled ODEs which are not amenable to analysis, we
must employ some approximation in order to make analytic progress. If a separation
of timescales exists, it is sometimes possible to extricate the dynamics happening
on a fast timescale from those occurring on a slow timescale. We can thus achieve a
reduction in the dimensionality of the system, which may make an analysis possible
or simply improve our intuition as to how the system behaves. Such a method is best
illustrated with a simple deterministic example.

Say onewishes tomodel themotion of a particle in a potential,U (x) = ax2+bx4,
with some viscous force βv. The potential is a double-well for a < 0, b > 0. Such
a system can be modelled as a set of ODEs of type (1.1);

dx

dt
= v,

dv

dt
= −βv − (2ax + 4bx3),

(1.11)

where the mass has been set equal to one. The system is nonlinear and does not
appear to be analytically intractable. Rescaling time such that τ = βt , the second
equation becomes

dv

dτ
= −v − 1

β
(2ax + 4bx3). (1.12)

In this form it is clear that if β is large, the second equation evolves on a much faster
timescale than that for dx/dt. We therefore assume that v reaches its stationary value
long before x , i.e. we set dv/dt = 0, solve for v as a function of x and substitute this
into the equation dx/dt. We find

v = − 1

β
(2ax + 4bx3), (1.13)

and therefore the approximate equation for the time evolution of x is

dx

dt
= − 1

β
(2ax + 4bx3). (1.14)

Unlike Eq. (1.11), this can be solved analytically. We find the slightly complicated
but exact expression

x(t) = ±
√

a
[
exp(4atβ−1)

(
ax−2

0 + 2b
)

− 2b
]−1

, (1.15)



1 Introduction 9

Fig. 1.3 Top panels potential trajectories of the system (1.11) plotted in grey. A specific trajectory
is plotted in black, while the slow subspace defined by Eq. (1.13) is plotted as a blue dashed line.
Filled/empty circles represent stable/unstable points in the system. Bottom panels Trajectory of
Eq. (1.11) plotted in black, while the trajectory of the reduced system (1.14) is plotted as a green
dashed line. In all plots parameters are a = −3, b = 1. In left panels β = 5, in right panels β = 500

where x0 = x(t0). Some illustrative plots are given in Fig. 1.3. While the reduced
system gives a poor approximation of the full dynamics for small values of β (left
panels), it provides an excellent approximation for large β (right panels). The tra-
jectory in the later case moves very quickly towards the slow subspace defined by
Eq. (1.13), along which it then moves at a much slower rate.

In stochastic systems, we will find that the process of fast-variable elimination is
not so straightforward. The goal of removing fast degrees of freedom from stochastic
systems has received significant attention and a variety of approximation methods
have previously been proposed (see, for example [1, 7, 12]), though a simple and
generally applicable theory is yet to emerge.

In this thesis, I will introduce two novel methods for reducing the dimensionality
of stochastic systems exhibiting a separation of timescales, as well as discussing their
relation to one another. These methods will then be applied to solve some specific
problems.

The order of the thesis is then as follows. In Chap.2, I will introduce the funda-
mental concepts and mathematical tools which will be employed in the remainder
of the thesis. In Chap. 3 the first method for stochastic fast-variable elimination will

http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_3
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be introduced. I will refer to this method as conditioning, for reasons which will
become apparent. The method will initially be applied to a toy model in Sect. 3.2
for illustrative purposes, before being generalised and applied to an epidemiological
model.

Chapter 4 sees the introduction of a second method of stochastic fast variable
elimination, the projection matrix method. Of particular interest is the application
of the method to a Moran model with migration between islands. I find that the
full model, in as many variables as there are islands, can be reduced to an effective
one-dimensional model. The consequences of the population structure are discussed
from a biological perspective in Chap. 5.

Finally, in Chap.6, I report on my most recent work involving stochastic fast-
variable elimination. In Sect. 6.1, mutation is incorporated into theMoranmodel with
migration introduced in Chap. 4. In Sect. 6.2, the conditioning and projection matrix
methods are compared directly. In Sect. 6.3, a model of genetic drift is considered in
which the total population size is not fixed. Once again, the stochastic fast-variable
elimination techniques developed in the earlier part of the thesis prove valuable.
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Chapter 2
Technical Background

In this chapter, I will review some of the fundamental ideas and mathematical tools
employed in the analysis of stochastic systems. Throughout, the discussion will
be concerned with Markov stochastic processes. This class of processes will be
introduced more formally in the following section, but for now they are simply
described as random processes without memory. We will see that the probability of
a system existing in a certain state may be described by a PDF which evolves in
time according to an equation known as the master equation. The master equation is
a set of partial difference equations and is in general completely intractable. It will
be shown that the situation can be greatly simplified however if the state variable is
assumed to be continuous.

Formally the approximation introduced is akin to the Kramers-Moyal expansion,
which allows the master equation to be approximated by a Fokker-Planck equation
(FPE). The FPE is a partial differential equation (PDE) in as many variables as there
are distinct types of individual in the original system. In most cases it is far more
tractable than the original master equation. Some useful manipulations of the FPE
are therefore introduced in Sect. 2.5.

While useful as a calculational tool, the FPE formalism is not very intuitive. Since
intuition will play an important role in developing the fast-variable approximation
schema in Chaps. 3 and 4, an alternative but equivalent formalism is introduced, that
of the stochastic differential equation (SDE). Naïvely, these can be interpreted as
ODEs of type Eq. (1.1) but with the addition of some small random noise.

The final sections of this chapter will then concentrate on a review of some essen-
tial tools from deterministic dynamical systems theory and their generalisation to
stochastic systems. The fundamental problems underlying fast-variable elimination
in stochastic systems can then be addressed.

In order to make the discussion less abstract, I will make reference throughout to
the concrete example of aMoranmodel.While a neutral Moranmodel was discussed
in the introduction, for various pedagogical reasons the Moran model with mutation
will serve as a preferable illustrative example.

© Springer International Publishing Switzerland 2015
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12 2 Technical Background

2.1 Stochastic Processes and the Markov Assumption

To begin, let us consider a single stochastic variable X which evolves in time. The
measured value of X at some point in time is the non-negative integer n. This defines
the state of the one-dimensional system. As stated in the introduction, in a stochastic
process the state of the system at some time is not necessarily known with certainty.
Therefore rather than consider the time evolution of the state of the system, we must
consider the time evolution of the PDF of states in the system.

Say the probability of being in state n at time t is given by the PDF P1(n, t). The
probability of following a specific trajectory in discrete time, beginning at a point
n1 at t1, moving to point n2 at t2 and so on over k steps until point nk at tk is a joint
PDF which can be denoted

Pk(nk, tk; nk−1, tk−1; . . . ; n1, t1). (2.1)

The process can be broken down by introducing the conditional probability distri-
bution, Pk|l(nk+l , tk+l; . . . ; nl+1, tl+1|nl , tl; . . . ; n1, t1). This is the probability of
following the trajectory nl+1 to nk+l given that the trajectory n1 to nl was first
followed. The two distributions are related via Bayes’ theorem [49], which states

Pk|l(nk+l , tk+l; . . . ; nl+1, tl+1|nl , tl; . . . ; n1, t1)

= Pk+l(nk+l , tk+l; . . . ; nl , tl; . . . ; n1, t1)

Pl(nl , tl; . . . ; n1, t1)
. (2.2)

This allows the PDF to be separated into a hierarchy.
A Markov process is one in which the probability of moving from state nk−1

to state nk depends only on the state of the system at tk−1 and not on the state of
the system at any previous times. This amounts to the conditional PDF having the
following property [37],

P1|k−1(nk, tk |nk−1, tk−1; . . . ; n1, t1) = P1|1(nk, tk |nk−1, tk−1). (2.3)

This is the mathematical meaning of the Markov processes being memoryless. Sub-
stituting this into Eq. (2.2) and rearranging, we arrive at

P2(nk, tk; nk−1, tk−1) = P1|1(nk, tk |nk−1, tk−1)P1(nk−1, tk−1). (2.4)

The Markov process is fully determined by the functions P1|1(nk, tk |nk−1, tk−1) and
P1(nk, tk), since, for any l > 2, one can write

Pl(nl , tl; . . . ; n1, t1) = P1(n1, t1)
l∏

k=2

P1|1(nk, tk |nk−1, tk−1). (2.5)
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The function P1|1(nk, tk |nk−1, tk−1) will be referred to as the transition probability.
The final step in completing our initial outlook on Markov processes is in noting

two summation relations. The first is rather obvious and is simply

P1(n2, t2) =
∑
n1

P1|1(n2, t2|n1, t1)P1(n1, t1). (2.6)

The second relation comes from first taking Eq. (2.5) with l = 3 and summing
over n2,

P2(n3, t3; n1, t1) = P1(n1, t1)
∑
n2

P1|1(n3, t3|n2, t2)P1|1(n2, t2|n1, t1). (2.7)

Dividing both sides by P1(n1, t1), one can then substitute for the left-hand side using
Eq. (2.2) to obtain

P1|1(n3, t3|n1, t1) =
∑
n2

P1|1(n3, t3|n2, t2)P1|1(n2, t2|n1, t1). (2.8)

This equation is a discrete form of the Chapman-Kolmogorov equation [38].
As stated earlier, functions P1 and P1|1 fully determine the Markov stochastic

process.However, these functionsmust obeyEqs. (2.6) and (2.8) in order to describe a
Markov process. The fact that Markov processes obey these convenient relationships
makes their analysis farmoremanageable than for their non-Markovian counterparts.
In part, this amenability explains their prevalence in stochastic modelling. There are
however many examples of processes that are non-Markovian. For instance, succes-
sive draws of coins without replacement from a purse containing a finite number of
coins in different denominations is a non-Markovian process; selecting a particular
denomination at some time decreases the probability of again picking that denomi-
nation at each successive time. In this case, the Markovian assumption would clearly
be a very bad modelling choice. However, it is Markov processes which we will be
concerned with for the rest of the thesis.

2.2 The Master Equation and the Limit of Continuous Time

In the previous section, the fundamental properties of a subset of stochastic processes,
Markov processes, were introduced. Let us now restrict our attention slightly further
to processes which are also homogeneous. A process is homogeneous if the transition
probability between any two given states at any two times is only dependent on the
time interval between those times [49]. That is

P1|1(n′, t + �t |n, t) = W�t (n
′|n). (2.9)
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We now wish to simplify the Chapman-Kolmogorov equation, (2.8), by looking
at its infinitesimal time-evolution. This will allow the system’s time-evolution to be
described by a set of differential equations. Let the system initially be at some state
n0 at t0.Wewish to know the conditional probability that the system is in state n some
small time �t later. This is given by the Chapman-Kolmogorov equation, Eq. (2.8),
which in this new notation reads

P1|1(n, t + �t |n0, t0) =
∑

n′
P1|1(n, t + �t |n′, t)P1|1(n′, t |n0, t0). (2.10)

If the process is homogeneous we can substitute in Eq. (2.9) to arrive at

P1|1(n, t + �t |n0, t0) =
∑

n′
W�t (n|n′)P1|1(n′, t |n0, t0). (2.11)

The assumption is now made [15] that for small �t the transition probability
W�t (n|n′) can be written

W�t (n|n′) =
{

T (n|n′)�t + O(�t)2 if n �= n′

1 − ∑
n �=n′′ T (n|n′′)�t + O(�t)2 if n = n′.

(2.12)

Essentially this assumes that in a small time interval, the probability of changing
state is to first order proportional to the time interval. Meanwhile the probability of
not changing state is much larger, so that as the time interval tends to zero there is no
probability that the system can change state. The function T (n|n′) is only defined for
n �= n′ and is called the probability transition rate, or alternatively just the transition
rate. AsEq. (2.12) suggests, T (n|n′) can be interpreted as the probability per unit time
of a transition from state n′ to a state n. Choosing to define the transition probability
in this manner ensures that, at least to order �t , the transition probability remains
appropriately normalised;

∑
n W�t (n|n′) = 1.

Substituting Eq. (2.12) into Eq. (2.11) and rearranging, one finds

P1|1(n, t + �t |n0, t0) − P1|1(n, t |n0, t0)

�t
= (2.13)∑

n �=n′

[
T (n|n′)P1|1(n′, t |n0, t0) − T (n′|n)P1|1(n, t |n0, t0)

] + O(�t). (2.14)

Letting �t → 0, the master equation is obtained [15],

d P(n, t)

dt
=

∑
n′ �=n

[
T (n|n′)P(n′, t) − T (n′|n)P(n, t)

]
, (2.15)
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where for notational convenience the subscript for the conditional distribution has
been suppressed, and an initial condition n0 at t0 is implicitly assumed. This notation
will be used in the remainder of the thesis. The interpretation of the master equation
is intuitively clear: the probability that the system is in state n increases with the
probability that the system moves into it from one of the surrounding states n′, but
decreases with the probability that the system is already in state n but transitions to
another state. The transition rates fully determine the model.

Thus far no discussion on how a stochastic system might be modelled in this
formalism has been presented. Let us rectify this with the aid of a specific example; a
Moran model with mutation. The only processes in the neutral model that change the
state of the system are a birth of type A followed by a death of type B or conversely a
birth of type B followed by a death of type A (see Eq. (1.9)). Adding mutation there
are a further two reactions which can occur, mutation from B to A and mutation
from A to B.1 For simplicity, we will here assume that these are independent from
birth/death events.

In order to model this process in the formalism described above, it is assumed
that the probability of an event in the population occurring is proportional to the
probability of picking the individuals involved in instigating the event randomly
from the population. The transition probability rate is then equal to this product
multiplied by a rate constant, which controls the rate at which the interactions occur.
Denoting the rate of birth/death as b, the rate of mutation from B to A as ω1 and the
rate of mutation from A to B as ω2, the probability transition rates are [32]

T (n + 1|n) =

Aborn/Bdies︷ ︸︸ ︷
b
( n

N

)(
N − n

N − 1

)
+

Bmutates toA︷ ︸︸ ︷
(1 − b)ω1

(
N − n

N

)
,

T (n − 1|n) = b

(
N − n

N

)(
n

N − 1

)
︸ ︷︷ ︸

Bborn/Adies

+ (1 − b)ω2

( n

N

)
︸ ︷︷ ︸

Amutates to B

, (2.16)

with all other transitions set to zero. Birth/death events are proportional to the product
of frequencies of A and B, since each event involves both types. Mutation events
only involve one type and are therefore linear in the relevant frequencies. Setting
ω1 = ω2 = 0, b = 1, one recovers the neutral Moran model, Eq. (1.9). Substituting
Eq. (2.16) into Eq. (2.15), the master equation reads

d P(n, t)

dt
= b

[
n + 1

N

(N − n − 1)

(N − 1)
P(n + 1, t) + n − 1

N

(N − n + 1)

(N − 1)
P(n − 1, t)

−
(
2

n

N

(N − n)

(N − 1)

)
P(n, t)

]

1We choose to addmutation because, as discussed in Chap. 1, the neutral model has no deterministic
dynamics. This makes it a poor model with which to illustrate general results.

http://dx.doi.org/10.1007/978-3-319-21218-0_1
http://dx.doi.org/10.1007/978-3-319-21218-0_1
http://dx.doi.org/10.1007/978-3-319-21218-0_1
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+ (1 − b)

[
ω2

n + 1

N
P(n + 1, t) + ω1

N − n + 1

N
P(n − 1, t) (2.17)

−
(

ω2
n

N
+ ω1

N − n

N

)
P(n, t)

]
,

which together with the initial frequency of type A individuals, n0, fully describes
the time evolution of the PDF.2 Models constructed in this way are referred to as indi-
vidual based models (IBMs) since they take account of explicit interactions between
individuals.

Despite this simple description, the master equation is very rarely analytically
tractable. Though there are methods of making analytic progress for a restricted
set of problems (usually with some exploitable symmetry), in general obtaining a
solution is a formidable task. The situation is further complicated if the system under
consideration is multidimensional. While the derivation of the master equation can
be easily extended to a multivariate system [49] described by the state vector n,

d P(n, t)

dt
=

∑
n′ �=n

[
T (n|n′)P(n′, t) − T (n′|n)P(n, t)

]
, (2.18)

solutions to the equation become even harder to obtain.
There are ways to make progress however. We will consider two avenues in turn:

an analytic approximation (the Fokker-Planck equation) and a method of simulating
particular realisations of a process obeying the master equation. For pedagogical
reasons, we shall consider the method of simulation first.

2.3 The Gillespie Algorithm

A particular realisation of a process obeying the master equation may be simulated
using the Gillespie algorithm [17]. A collection of such realisations can then be used
to estimate properties of the underlying distribution, P(n, t). While the algorithm
itself is not essential to the work in this thesis, it does provide a nice insight into the
behaviour of systems obeying the master equation. As such it is useful to review the
salient points of the algorithm here.

We begin by describing a system comprised of m different species, so that the
state of the system is given by an m-dimensional state vector n. The system is set to
n0 at t0 so that the initial distribution is simply a delta peak p(n, t0) = δ(n − n0).
We suppose that there are u different types of reaction which may occur given the
system is in this state. In order to make the following discussion more clear, it is
useful to introduce the stoichiometric matrix, ν. The stoichiometric matrix is an m
by u matrix which gives a concise way of stating which species were transformed

2Note that while we could have specified the birth/death events and mutation events by separate
transition rates in Eq. (2.16), this would have led to no change in Eq. (2.17).
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in a given reaction. Each element νiμ (i = 1 . . . m, μ = 1 . . . u) gives the change in
number of the i th species due to theμth reaction. The u reactions then take the system
from state n to n′ = n + νμ, where the vector νμ is the μth column of the matrix ν.
In this notation, for a given state n at time t , we can describe all the transitions by
Tμ(n + νμ|n). The master equation may be rewritten in this new notation as

dP(n, t)

dt
=

u∑
μ=1

[
Tμ(n|n − νμ)P(n − νμ, t) − T (n + νμ|n)P(n, t)

]
. (2.19)

In the Moran model with mutation, we simply have m = 1 and u = 2, while the
stoichiometry matrix is

ν = (1 , −1) (2.20)

since the system is described by a single species variable and the transitions either
increase or decrease this number by one.

Wewish to simulate a realisation of the stochastic process which obeys the master
equation. For each reaction realised, this requires evaluating two stochastic quantities.
Not only do we need to know which of the u reactions occurs, we also need to know
when it occurs. In order to do this in a way consistent with the probability distribution
evolving according to Eq. (2.19), we first move to considering an equivalent form of
the Eq. (2.19) in terms of a new distribution P(τ ,μ|n, t). This distribution is defined
such that P(τ ,μ|n, t)�τ is the probability that the next reaction is the μth and that
it occurs in the time interval [t + τ , t + τ + �τ ]. In other words, it is the probability
that no reaction occurs between t and t + τ and that when the reaction occurs it is
the μth reaction in the interval [t + τ , t + τ +�τ ]. We now note that the conditional
distribution, P(n, τ |n, t), is the probability that no reaction has occurred between t
and τ . Since, given some state n, the probability that the system transitions to state n′
in time �τ is given by the transition probability W�t (n +νμ|n) ≈ Tμ(n +νμ|n)�τ
(see Eq. (2.12)), P(τ ,μ|n, t)�τ and P(n, τ |n, t) can be related by

P(τ ,μ|n, t)�τ = P(n, τ |n, t)Tμ(n + νμ|n)�τ . (2.21)

To calculate P(n, τ |n, t) we return to the master equation, Eq. (2.19), and fix the
state of the system to n. The resulting equation is

d P(n, τ |n, t)

dτ
= −P(n, τ |n, t)

u∑
μ=1

Tμ(n + νμ|n). (2.22)

Given the system is already in state n, the master equation can thus be solved for
P(n, τ |n, t) to show

P(n, τ |n, t) = exp

⎛
⎝−

u∑
μ=1

Tμ(n + νμ|n)τ

⎞
⎠ ; (2.23)
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the time until the next reaction occurs, τ , is exponentially distributed. Substituting
this into Eq. (2.21), one obtains

P(τ ,μ|n, t)�τ = exp

⎡
⎣−

u∑
μ=1

Tμ(n + νμ|n)τ

⎤
⎦ Tμ(n + νμ|n)�τ . (2.24)

Since this can be equivalently expressed

P(τ ,μ|n, t) =
⎛
⎝ u∑

μ=1

Tμ(n + νμ|n) exp

⎡
⎣−

u∑
μ=1

Tμ(n + νμ|n)τ

⎤
⎦

⎞
⎠

(
Tμ(n + νμ|n)∑u

μ=1 Tμ(n + νμ|n)

)
,

we see clearly that the time until the next reaction and the specific reaction which
takes place are statistically independent. The time until the next reaction and the next
reaction itself can therefore be separately specified by two distinct random numbers
drawn from the above distributions [16]. This allows us to proceed with an algorithm
to evaluate a trajectory for the master equation:

1. Calculate the transition rates based on the initial conditions
2. Use these to determine the distributions of next reaction times and reactions
3. Draw a random time until the next reaction and a type of reaction to occur from

these distributions
4. Change the time and state of the system accordingly
5. Recalculate the transition rates based on the new state of the system
6. Repeat.

While this simulation procedure gives a useful interpretation of the evolution
of the system at short times, it gives no insight into the statistical behaviour of
the system. Further, though one can look at the statistics of many realisations of the
Gillespie algorithm to infer the properties of P(n, t), this does not provide as deep an
understanding of the system as an analytical treatment.While the Gillespie algorithm
will prove useful to compare against analytic results, for a deeper understanding we
must resort to solving an approximation of the master equation.

2.4 The Expansion of the Master Equation

So far a general formalism for modelling a class of stochastic systems has been
presented. It has been stated that the governing equation, the master equation, is
in the vast majority of cases very difficult to solve. While simulating the master
equation has been shown to be relatively straightforward, we are still no further in
making the analytic progress which we initially sought. It will now be shown that the
problem can be simplified significantly by using an approximation which resembles
the Kramers-Moyal expansion.
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The Kramers-Moyal expansion is one of a set of schema which approximate the
master equation by assuming a continuous state space. The van-Kampen system
size expansion, or linear noise approximation (LNA), is another such scheme [49].
Technically, the approximation used here is not theKramers-Moyal expansion,which
features no explicit small parameter [15]. The approximation presented is instead a
hybrid of the two methods, since it follows the methodology of the Kramers-Moyal
expansion but using an explicit small parameter determined from the system size.

To illustrate the idea, the procedure will be applied to the specific example of the
Moranmodel withmutation (introduced in Sect. 2.2) before amore general treatment
is provided. We begin by taking the master equation (2.17), and introduce a new
variable x such that x = n/N . The master equation then becomes

∂ p(x, t)

∂t
= b

[(
x + 1

N

)
N

N − 1

(
1 − x − 1

N

)
p(x + 1/N , t)

+
(

x − 1

N

)
N

N − 1

(
1 − x + 1

N

)
p(x − 1/N , t)

−
(
2x

N

N − 1
(1 − x)

)
p(x, t)

]

+ (1 − b)

[
ω2

(
x + 1

N

)
p(x + 1/N , t)

+ ω1

(
1 − x + 1

N

)
p(x − 1/N , t) − (ω2x + ω1(1 − x)) p(x, t)

]
,

(2.25)

where we note p(x, t) is a new continuous distribution. The recurrent factors of 1/N
in this equation give us a clue as how to proceed. If N is large, a Taylor expansion of
p(x, t) about x can be conducted. Assuming that the mutation rate is small (of order
N−1) and collecting terms order by order in 1/N , one arrives at a one-dimensional
example of the Fokker-Planck equation;

∂ p(x,t)
∂t = − (1−b)

N
∂
∂x [(ω1 − (ω1 + ω2)x)p(x, t)]

+ b
2N2

∂2

∂x2
[2x(1 − x)p(x, t)] + O(N 3).

(2.26)

This PDE in two variables, x and t , is far more amenable to analysis than the N + 1
partial difference equations comprising the master equation. Its physical interpreta-
tion is perhaps most evident when read as a convection-diffusion equation; the term
preceding p(x, t) in the first spatial derivative governs its ‘bulk advection’, while
that in the second derivative describes diffusion. For this reason they are referred to
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as the drift and diffusion terms respectively.3 We can also write a continuity equation
for this system by introducing the probability flux or probability current, J (x, t);

∂ p(x, t)

∂t
= −∂ J (x, t)

∂x
. (2.27)

Say we want to calculate how the mean value of x , 〈x〉 = ∫
xp(x, t)dx , evolves

in time.We can derive an equation for its time-evolution bymultiplying Eq. (2.26) by
x and integrating over all x . The expression can be further simplified by noting that
J (x, t) must be zero at the reflecting boundaries x = 0 and x = 1 (we will discuss
meaning of this term and other boundary conditions in Sect. 2.5) and that in this
particular model the diffusion term is also zero at the boundaries. Letting τ = t/N ,
the resulting equation is then

d〈x〉
dτ

= (1 − b) [ω1 − (ω1 + ω2)〈x〉] . (2.28)

The time-evolution of the mean is governed entirely by the drift term. This behaviour
can also be obtained by rescaling time in Eq. (2.26) such that τ = t/N , taking the
limit N → ∞ and noting that p(x ′, t) = δ(x(τ ), x ′) is a solution of the resulting
equation. We will call this the macroscopic behaviour of the system, or alternatively
the deterministic limit. Note that for the neutral model, with ω1 = ω2 = 0, there are
no deterministic dynamics, as stated in Eq. (1.10).

The idea is generalised as follows. Let us postulate that there is some large para-
meter N which is both inversely proportional to the reaction rates and some measure
of the typical size of the system. In the case of the Moran model this is specifically
the size of the system, though in general it could be the typical size (or volume) of
the systemwhich governs the interaction rate, or even the inverse of a naturally small
reaction rate. A new set of variables x = n/N is introduced. If N is a measure of
system size, the new variables can be naturally interpreted as some measure of the
concentration of each species in the population.

Introducing the functions fμ(x) = Tμ(N x + νμ|N x), the master equation
Eq. (2.19) can be reexpressed

dp(x, t)

dt
=

u∑
μ=1

[
fμ(x − νμN−1)p(x − νμN−1, t) − fμ(x)p(x, t)

]
, (2.29)

where we have again changed from a distribution P(n, t) to p(x, t). In this form it
is clear that if N is large, one may proceed in the same way as in the Moran model

3An unfortunate clash of nomenclature appears here between the physics and biology communities.
In population genetics, genetic drift is the process by which the composition of a population is
changed by noise. Drift in the context of population genetics therefore refers to the noisy component
of a system’s behaviour, rather than the deterministic component, as in physics.

http://dx.doi.org/10.1007/978-3-319-21218-0_1
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example by assuming x is continuous and implementing a Taylor expansion about
x. This is the essence of the master equation expansion.

While the expansion contains results in decreasing orders of N , it can be shown
that the resulting expression only leads to a strictly positive PDF if truncated at
order N−2, or alternatively keeping the infinite series of terms. This is the Pawula
theorem [38]. Since in going to infinite precision the expression is as complicated
as the master equation, we truncate the expansion at O(N−2) to achieve our desired
simplification. The resulting equation is amultivariate FPE [38] which takes the form

∂ p(x, t)

∂t
= − 1

N

m∑
i=1

∂

∂xi
[Ai (x)p(x, t)] + 1

2N 2

m∑
i. j=1

∂2

∂xi∂x j

[
Bij(x)p(x, t)

]
,

(2.30)

where A(x) is is now the drift vector, while B(x) is the diffusion matrix. Their forms
are governed by the stoichiometry matrix and the transition rates [33] such that

Ai (x) = lim
N→∞

u∑
μ=1

νiμ fμ(x) (2.31)

and

Bij(x) = lim
N→∞

u∑
μ=1

νiμν jμ fμ(x). (2.32)

Once again, rescaling time such that τ = t/N and taking the limit N → ∞, the
resulting equation admits P(x′, t) = δ(x(τ ), x′) as a solution such that

dx
dτ

= A(x), (2.33)

describes the deterministic, macroscopic dynamics. We note that it is also possible
to obtain an analogous macroscopic description directly from the master equation
(2.29) in terms of the mean value 〈x〉. However, for a general nonlinear system, this
requires making the further assumption that the decomposition 〈xi x j 〉 = 〈xi 〉〈x j 〉
can be made in order to close the resulting equations. This is only generally true if
the distributions for xi are delta functions, or as we have seen to be equivalent, if the
system size N is infinite.

Since it is possible to calculate A(x) and B(x) entirely from the stoichiometry
matrix and reaction rates,models are sometimes expressed in the notation of chemical
reactions, in terms of reactants and products (in fact the term ‘stoichiometric matrix’
is borrowed from chemistry). For an arbitrary m-dimensional IBM, whose dynamics
are fully described by a set of u reaction rates, themodel can be expressed in chemical
reaction notation as
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m∑
i=1

aμi Xi

rμ−−−→
m∑

i=1

bμi Xi , ∀μ = 1, . . . , u, (2.34)

where aμi and bμi respectively specify the reactants and products of the μth reaction,
and rμ are the reaction rate constants. The elements of the stoichiometric matrix are
then given by νiμ = bμi − aμi , while the reaction rate constants rμ are related to the
transition rates by an equation of the form

Tμ(n′|n) ∝ rμ

m∏
i=1

aμi
ni

N
. (2.35)

Implicit in this notation is the assumption that the probability of a reaction occurring
is proportional to the product of the reactant concentrations. This is also known as
the law of mass action. Most often this is the case, however situations may arise in
which we wish to incorporate additional state dependence. An example of such a
system will be given in Sect. 2.9.1. For clarity we will not describe such reactions
in this notation. Additionally we have introduced a measure of system size N . The
determination of what this parameter should be is highly dependent on the system
under consideration.

In expanding the master equation, we have moved from the microscopic descrip-
tion of an IBM involving as many equations as there are states (the master equation)
to one in which there are only as many variables as there are species (the FPE).
The crux of the approximation is in changing to a new set of variables x = n/N
which are approximately continuous (the diffusion approximation) before applying
a Taylor expansion to the master equation and neglecting terms of order N−3. When
modelling populations, the parameter N is usually identified as the size of the pop-
ulation. In the limit N → ∞, we have seen that the FPE describes a deterministic
dynamic which we have termed the macroscopic dynamic. In this spirit, since the
FPE lies between the master equation and deterministic equation in terms of detail,
it is often referred to as a mesoscopic description.

The Fokker-Planck equation is clearly more amenable to analysis than the mas-
ter equation with which we began. Of particular interest is the one-dimensional
Fokker-Planck equation, from which many properties of interest can be calculated
analytically.

2.5 The Fokker-Planck Equation and Some Useful
Manipulations

In this section wewill discuss the way in which the one-dimensional FPE can be used
to obtain three particular quantities of interest; the stationary probability distribution,
the first passage probability and the first passage time. However, let us first discuss
some particular boundary conditions of the one-dimensional FPE which will come
in useful later.
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We begin by imagining the system existing on an interval [a1, a2] in state space,
from which it cannot leave. The FPE (2.26) describes such a system, with x lying
on the interval [0, 1]. In this case there should be zero flow of probability across
the boundary. Therefore the probability current must be zero when evaluated at the
boundaries; J (a1, t) = J (a2, t) = 0. Such boundaries are called reflecting.

Now let us consider a system in which there exist states where there are no
dynamics. Such states are called absorbing. In order to account for this, we define
the barriers as existing outside of the interval, so that when the system reaches the
boundary it is removed. The probability of being at either of the boundaries is then
zero, p(a1, t) = p(a2, t) = 0. If the barriers a1 and a2 of the system are absorbing, it
is clear that given an infinite amount of time, the probability of the system remaining
on the interval will tend to zero as probability ‘leaks out’ of the interval. An example
of such a system is the neutral Moran model with transition rates (1.9) discussed in
the introduction. Finally, if the boundaries are at infinity, we expect p(x, t), along
with J (x, t), to vanish at x = ±∞.

2.5.1 The Stationary Probability Distribution

First consider a system with two reflecting boundaries at a1 and a2. In the limit of
long times one might expect the PDF p(x, t) in Eq. (2.30) to become independent of
time. We call this distribution the stationary distribution, and it is defined by

pst(x) = lim
t→∞ p(x, t). (2.36)

Since pst(x) is independent of time, we find it must satisfy the equation [15]

− 1

N

d

dx
[A(x)pst(x)] + 1

2N 2

d2

dx2
[B(x)pst(x)] = 0. (2.37)

The solution to this equation is

pst(x) = exp

(∫ x

a1
dy

2N A(y) − d B(y)/dy

B(y)

)[∫ a2

a1
dx exp

(∫ x

a1
dy

2N A(y) − d B(y)/dy

B(y)

)]−1

,

or

pst(x) = 1

B(x)
exp

(
2N

∫ x

a1
dy

A(y)

B(y)

)[∫ a2

a1
dx

1

B(x)
exp

(
2N

∫ x

a1
dy

A(y)

B(y)

)]−1

(2.38)

where we have appropriately normalised so that
∫ a2

a1
dx pst(x) = 1. This can yield

interesting results about the system’s long time behaviour. For instance, we can look
at the FPE for the Moran model with mutation, Eq. (2.26), in which there are no

http://dx.doi.org/10.1007/978-3-319-21218-0_1
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absorbing states for both ω1 and ω2 greater than zero and b less than one. Comparing
Eq. (2.26) with Eq. (2.30), we see for this system that

A(x) = (1 − b)(ω1 − (ω1 + ω2)x), B(x) = 2bx(1 − x). (2.39)

Substituting these terms into Eq. (2.38), and noting that x lies on the interval [0, 1],
the stationary distribution takes the form

pst(x) = xc(1 − x)d∫ 1
0 dxxc(1 − x)d

, (2.40)

with

c = Nω1(b
−1 − 1) − 1, d = Nω2(b

−1 − 1) − 1.

Some of the different behaviour the system can exhibit is demonstrated in Fig. 2.1.
If the system instead has absorbing boundaries, there is no stationary distribution

on the interval a1 < x < a2, since all the stochastic trajectories eventually leave the
interval. In such cases, there are other measures of the system’s behaviour which are
more illuminating.

(a) (b)

(c)

Fig. 2.1 Different regimes of Eq. (2.40) with different c and d parameters. The histograms are
obtained from Gillespie simulations using the model defined by Eq. (2.16). a Parameters c <

0, d < 0. b Parameters c = 0, d = 0. c Parameters c > 0, d > 0
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2.5.2 First Passage Problems

First passage problems are thosewhich ask ‘what is the probability the system reaches
a particular final condition?’, or ‘what are the statistics of the time for the system to
reach this final condition?’. In order to calculate these first passage properties, we
find it useful to work with the backward Fokker-Planck equation (BFPE). This can
be expressed in one dimension as [15, 38]

−∂q(x, t |x0, t0)

∂t0
= A(x0)

N

∂

∂x0
[q(x, t |x0, t0)] + B(x0)

2N 2

∂2

∂x20
[q(x, t |x0, t0)] .

(2.41)

If the process under consideration is homogeneous, the evolution of the system
depends only on the difference between the initial and final time t − t0, and the
BFPE can be rewritten in terms of the derivative with respect to t ;

∂q(x, t |x0, t0)

∂t
= A(x0)

N

∂

∂x0
[q(x, t |x0, t0)] + B(x0)

2N 2

∂2

∂x20
[q(x, t |x0, t0)] .

(2.42)

The key difference between the forward FPE (2.30) and the BFPE, is which set of
variables are kept fixed and which vary. In the forward FPE the initial conditions x0
at t0 are kept fixed, and one finds for solutions for t ≥ t0. In the BFPE we keep the
final condition x at t fixed and calculate for solutions with t0 ≤ t . Since in the BFPE
we fix the final condition, it is clearly more useful when dealing with first passage
problems. For simplicity, we restrict ourselves to a one-dimensional homogeneous
system.

We wish to know the time until a system first escapes the region between two
points, x = a1 and x = a2, given some initial condition a2 > x0 > a1. This time
is clearly a stochastic variable and so it will be described by a PDF indicating the
probability of a certain first passage time t given initial condition x0. It is denoted
here by T(x0, t). We begin by defining the probability G(x0, t) that, at some time t ,
the system is still on the interval;

G(x0, t) =
∫ a2

a1
dx q(x, t |x0, t0), (2.43)

where the dependence on the initial time has been suppressed. Integrating Eq. (2.42)
over x between a1 and a2, we find in fact the equation for G(x0, t) obeys the same
BFPE as q(x, t |x0, 0);

∂G(x0, t)

∂t
= A(x0)

N

∂

∂x0
[G(x0, t)] + B(x0)

2N 2

∂2

∂x20
[G(x0, t)] , (2.44)
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with initial condition

G(x0, t0) = 1 if a1 < x0 < a2, (2.45)

G(x0, t0) = 0 elsewhere, (2.46)

and boundary conditions

G(a1, t) = G(a2, t) = 0. (2.47)

Since G(x0, t) is the probability that at time t the system is still on the interval
a1 < x < a2, the quantity G(x0, t)−G(x0, t +�t) is the probability that the system
has reached one of the boundaries during t to t + �t . This can be related to T(x0, t)
quite simply, since

T(x0, t)�t = G(x0, t) − G(x0, t + �t), (2.48)

or, rearranging and sending �t → 0,

T(x0, t) = −∂G(x0, t)

∂t
. (2.49)

The mean time for the system to leave the interval, denoted T (x0), can be calculated
directly from the distribution T(x0, t) by T (x0) = ∫ ∞

t0
tT(x0, t) dt . Using the above

equality, this can be expressed

T (x0) = −
∫ ∞

t0
t
∂G(x0, t)

∂t
dt. (2.50)

This equation can be integrated by parts; letting t0 = 0 and assuming that tG(x0, t)
tends to zero as t → ∞, one arrives at

T (x0) =
∫ ∞

0
G(x0, t)dt. (2.51)

Integrating Eq. (2.44) over time and noting that G(x0, t) tends to zero as t → ∞,
we then arrive at an equation for the mean time to reach either of the boundaries

− 1 = A(x0)

N

d

dx0
T (x0) + B(x0)

2N 2

d2

dx20
T (x0) (2.52)

with the boundary conditions,

T (0) = 0, T (1) = 0. (2.53)

In this case the boundary conditions follow by noting that they are the time to reach
either x = a1 or x = a2, so that at both extremes the system has already fixed on
the boundaries.
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Fig. 2.2 Graphical summary of results from the neutral Moran model. Left panel probability of
fixation of type A, Q(x0), in a neutral system as a function of initial A type concentration, x0. Right
panel time to fixation of either A or B type, T (x0), scaled by the system size squared, N 2, as a
function of the initial concentration of type A

Let us go back to the neutral Moran model described by Eq. (1.9). In this case the
points x = 0 and x = 1 are absorbing boundaries from which the system cannot
leave. At these points the population is said to have fixated. Using Eq. (2.52) and
Eq. (2.53), with A(x) = 0 and B(x) taken from Eq. (2.39), we can calculate the time
this would take to happen. One finds [10]

T (x0) = −N 2 [(1 − x0) ln (1 − x0) + x0 ln (x0)] , (2.54)

which is plotted in the right panel of Fig. 2.2. In the nomenclature of population
genetics this is called the mean unconditional fixation time.

What about the probability that the system hits one of these boundaries before
the other? Let us return to considering a function of the same form as G(x0, t) in
Eq. (2.43), but this time introduce two slightly different functions to account for
different integration limits;

Ga1(x0, t) = 1 −
∫ ∞

a1
dx q(x, t |x0, t0) =

∫ a1

−∞
dx q(x, t |x0, t0), (2.55)

Ga2(x0, t) =
∫ ∞

a2
dx q(x, t |x0, t0) = 1 −

∫ a2

−∞
dx q(x, t |x0, t0). (2.56)

The first of these functions gives the probability that, at time t , the system is at some
point x < a1 and the second that it is at some point x > a2. Of course, this gives us
no information about which of these regions the system ended up in first. To do this
would require a consideration of the trajectories conditioned such that the time to
one boundary was less that the time to the other. Our task is significantly simplified
however if we force the boundaries a1 and a2 to be absorbing. Then once the system
hits state a1 or a2 it is immediately removed and we do not have to worry about time-
ordering. The functions Ga1(x0, t) and Ga2(x0, t) then tell us respectively whether
at time t the system has hit either a1 or a2. Both functions obey the equations

http://dx.doi.org/10.1007/978-3-319-21218-0_1
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∂Ga1/a2(x0, t)

∂t0
= A(x0)

N

∂

∂x0

[
Ga1/a2(x0, t)

] + B(x0)

2N 2

∂2

∂x20

[
Ga1/a2(x0, t)

]
,

(2.57)

but with different boundary conditions. As t → ∞, the probability of having hit
either a1 or a2 tends to one. Introducing

Qa1/a2(x0) = lim
t→∞ Ga1/a2(x0, t), (2.58)

we see the equation for both functions is

0 = A(x0)

N

∂

∂x0

[
Qa1/a2(x0)

] + B(x0)

2N 2

∂2

∂x20

[
Qa1/a2(x0)

]
, (2.59)

albeit with different boundary conditions. For Qa1(x0) we have

Qa1(a1) = 1, Qa1(a2) = 0, (2.60)

and for Qa2(x0) instead

Qa2(a1) = 0, Qa2(a2) = 1. (2.61)

Once again the neutral Moran model, Eq. (1.9), may be used to illustrate the method.
We ask the question, what is the probability of the system reaching the point x = 1
given some initial condition x0? Since at x = 1 the system is composed entirely
of the A type individuals, this is called the fixation probability. In the neutral case
A(x0) = 0 and therefore we obtain

Q1(x0) = x0, Q0(x0) = 1 − x0. (2.62)

The probability of either type fixating is thus simply proportional to their respective
initial frequencies in the neutral model (see Fig. 2.2). We note that in population
genetics it is most common to simply discuss the probability of fixation of the A type
and for simplicity we will often write this probability Q(x0) ≡ Q1(x0).

2.6 Stochastic Differential Equations

Stochastic differential equations (SDEs) are perhaps the earliestway inwhich dynam-
ical stochastic processeswere formalised.Whereas theFPE is a deterministic descrip-
tion of the time evolution of a PDF, SDEs are differential equations describing the
evolution of a stochastic variable. Say we wished to postulate the form of a general

http://dx.doi.org/10.1007/978-3-319-21218-0_1
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nonlinear SDE describing aMarkov process.Motivated purely by physical reasoning
and a desire for simplicity, we choose to express it

dx
dt

= A(x) + g(x)ζ(t), (2.63)

where g(x) is a matrix. The vector A(x) drives the deterministic dynamics, while
the ζ(t) terms are noise terms arising from some stochastic source. We choose the
noise to have zero mean and be delta-correlated in time, with a strength g(x) which
may be proportional to the state of the system:

〈ζi (t)〉 = 0, (2.64)

〈ζi (t)ζ j (t
′)〉 = δijδ(t − t ′). (2.65)

Now let us fix the entire distribution of ζ(t) by stating that the noise is Gaussian. Thus
each odd moment is zero and each even moment may be calculated from Eq. (2.65).
If the noise strength g(x) is state dependent the noise is said to be multiplicative [49].
Otherwise it is said to be additive. The choice that the noise is delta correlated in
time is a reflection of our wish to model a Markov process. We could obviously have
chosen the noise to have a non-zero mean, however the result of this would be to
simply add some effective deterministic drift to the system, obfuscating matters.

The SDE perspective offers a much more physically intuitive interpretation of
stochastic processes than the Fokker-Planck equation; the system evolves in time
according to a deterministic contribution A(x) plus some noise ζ(t). Ultimately how-
ever, it provides an inferior starting point for modelling systems with demographic
noise. This inferiority is twofold. First, it is a mesoscopic description which has been
arrived at in an ad-hoc manner. While the form of the deterministic contributions
could conceivably be derived from the interactions in the system, it is unclear what
form the noise should take. Second, the interpretation of Eq. (2.63) is ambiguous. To
see this, it is perhaps best to ask the question, how would one integrate Eq. (2.63)?
The problem here is essentially where the term g(x) should be evaluated, since x is
undefined at the time when a delta function ‘kick’ arrives. The two interpretations
that are most common are that of Stratanovich and Itō. Respectively they are [38]

x(t + �t) − x(t) = A(x(t))�t + g

(
x(t) + x(t + �t)

2

)∫ t+�t

t
ζ(t ′)dt ′ (Stratanovich),

x(t + �t) − x(t) = A(x(t))�t + g(x(t))
∫ t+�t

t
ζ(t ′)dt ′ (ItŌ).

Importantly, not only do these two interpretations describe different stochastic
processes, they also each lead to different rules of stochastic calculus. While it can
be shown that Eq. (2.63) is equivalent to an FPE, these different rules of calculus
lead to different forms of the FPE. If one were to use the SDEs as a starting point in
the modelling process, one would not only have to postulate the form of the matrix
g(x), but also the interpretation. If, conversely, one begins with an FPE, the associ-
ated SDEs do not suffer from this ambiguity. The FPE is a well defined PDE which
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is equivalent to one set of SDEs in the Stratanovich scheme and another in the Itō
scheme. Given an FPE, which of the two schemes we work in is thus a matter of
choice. We choose to work in the Itō setting, and therefore ignore the Stratanovich
interpretation for the rest of the thesis. In the Itō setting, different rules of calculus
apply when conducting a non-linear change of stochastic variables, Itō calculus [15].
However, since only linear transformations are utilised in this thesis (for which the
rules of calculus are unchanged) the details of Itō calculus will not be discussed here.

Defining the matrix

B(x) = Ng(x)gT (x), (2.66)

the SDE (2.63) can be rewritten as

dx
dτ

= A(x) + 1√
N

η(τ ), (2.67)

with the Gaussian white noise now characterised by

〈ηi (τ )〉 = 0, (2.68)

〈ηi (τ )η j (τ
′)〉 = Bij(x)δ(τ − τ ′). (2.69)

Interpreting Eq. (2.67) in the Itō sense, it can be shown to be entirely equivalent to
the FPE (2.30) with the same drift vector A(x) and diffusion matrix B(x), and time
scaled such that τ = t/N . As a result of this alternate form, the diffusion matrix is
sometimes also referred to as the noise covariance matrix or noise correlation matrix.
In this form some insights about the FPE become very clear. Firstly, in the N → ∞
limit, the system follows a deterministic trajectory governed by A(x). Secondly, the
size of the noise is governed by N−1/2. Increasing the system size decreases the
relative magnitude of the noise.

We have here shown once again that in the limit of infinite system size the system
follows a deterministic trajectory. Further, this trajectory is also the mean path of all
stochastic trajectories for large N . Both these ideas are very intuitive when posed
in the SDE formalism. It is for this reason that we will often choose to work in this
setting. Since it is clear that the deterministic element of the equation is of great
importance in governing the dynamics, we will now review some basic properties of
dynamical systems theory, as well as their extensions to certain stochastic problems.

2.7 Dynamical Systems Theory

In the deterministic limit, the systems under consideration in this thesis will take the
form of a set of ODEs

dx
dt

= A(x). (2.70)
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We wish to understand the dynamics of such a system. In general, a solution to
Eq. (2.70) can only be obtained if the system is linear. In this case the system may
be described by

dx
dt

= H x, (2.71)

which has solutions

x(t) =
m∑

i=1

civ
(i)eλ(i)t , (2.72)

where ci are a set of constants determined from the initial conditions of the problem,
v(i) are the right-eigenvectors of H and λ(i) their associated eigenvalues. If all the
eigenvalues have a negative real part the system will collapse onto the point xi = 0
as t → ∞. If one of the eigenvalues is positive, x will grow exponentially in the
direction described by the associated right-eigenvector. If the largest eigenvalue of
the system is zero, say λ(1) = 0, the final state of the system will be dependent on
the initial conditions via the constant c1 [46].

If the system under consideration is non-linear, while one may be able to solve the
equations in some special instances, it is more than likely we will not be able to make
analytic progress. This is particularly true for non-linear systems inmanydimensions.
We can however answer questions about the potential long-time behaviour of the
system.

The fixed points are points at which there are no dynamics. They shall be denoted
x∗ and are the solutions to the equations

A(x∗) = 0. (2.73)

Crucially we want to know what happens to perturbations around these points; do
they shrink or do they grow? In other words are the fixed points stable or unstable?
To do this we conduct a Taylor expansion in a variable ξ which perturbs x by a small
amount ε about the fixed point such that x = x∗ + εξ. Conducting the expansion and
neglecting nonlinear terms in ε, we find

ξ̇ = Jξ, (2.74)

where J is the Jacobian of A evaluated on the fixed point x∗ aboutwhichwe linearise;
Jij = (d Ai/dx j )|x=x∗ . Since Eq. (2.74) has the same form as Eq. (2.71), the solution
for ξ(t) is analogous to Eq. (2.72) and determining the stability of x∗ therefore comes
down to determining the eigenvalues of J . If all eigenvalues of J are less than zero,
perturbations away from the fixed point will shrink back to the fixed point which is
stable. If any eigenvalues are greater than zero, any perturbation from the fixed point
will blow up, and so the fixed point is unstable.



32 2 Technical Background

If the system contains noise (such as Eq. (2.67)) then we can still linearise about
a fixed point. Setting ε = 1/

√
N , the typical fluctuation size, one obtains

ξ̇ = Jξ + ζ(t), (2.75)

where

〈ζ(t)〉 = 0
〈
ζi (t)ζ j (t

′)
〉
= δ(t − t ′)Bij(x∗). (2.76)

This is a linear system with additive noise, since to linear order B(x) is evaluated at
the fixed point. If the fixed point is stable this provides a good approximation for the
fluctuations of the system (2.67) in the region of the fixed point.4 The expression is
made even more useful under the assumption that the boundary conditions for this
problem lie at ±∞. In this case the associated linear FPE can be shown to describe a
Gaussian distribution [30], and thus the entire PDF of the system can be characterised
by its first two moments. The equations for these moments are

d

dt
〈ξk〉 =

m∑
j=1

Jk j 〈ξ j 〉 (2.77)

and

d

dt
〈ξkξl〉 =

m∑
j=1

Jk j 〈ξ jξl〉 +
m∑

j=1

Jl j 〈ξ jξk〉 + Bkl(x∗). (2.78)

The first moment has a solution of the same form as Eq. (2.72). Rather than solve the
equation for the second moment, it is more convenient to combine Eqs. (2.77) and
(2.78) to give an equation of the covariance matrix � of the PDF [49];

�̇ = J� + �J T + B(x∗). (2.79)

While this equation for � is the same as that for the second moments, Eq. (2.78),
its initial conditions are particularly simple. Given a certain initial condition xi0,
(a delta peak p(x, 0) = ∏m

i=1 δ(xi − xi0) in the associated linear FPE), � vanishes
at t = 0. The solution to Eq. (2.79) can then be shown to be [49]

�(t) =
∫ t

0
e(t−t ′)J Be(t−t ′)J T

dt ′. (2.80)

4Of course we could have conducted this linearisation in the FPE setting if we desired. We note that
if the SDE (2.67) had been derived from a master equation (via the expansion detailed in Sect. 2.4),
the resulting linearised FPE is the same as that which would be obtained if the LNA had been
applied directly to the master equation.
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If all the eigenvalues of J are negative, the system eventually relaxes to a stationary
distribution with zero mean (see Eqs. (2.72) and (2.77)) and a covariance matrix
which solves the equation

J� + �J + B(x∗) = 0. (2.81)

More generally this equation is known as the Lyapunov equation [22].

2.8 Fast-Variable Elimination: The Origins
of a Complicated Problem

In Chap.1, a simple deterministic system featuring a separation of timescales was
presented, alongwith amethod of solution. Such a solution goes bymany names such
as adiabatic elimination, a quasi-steady state approximation or simply fast-variable
elimination [19]. In this thesis the term fast-variable elimination will be used. Let us
elaborate on the example discussed in the introduction slightly. We may describe a
generalisation of a system such as (1.11), in m variables, as [19]

dxi

dt
= fi (x, y), i = 1 . . . r (2.82)

ε j
dy j

dt
= −y j + ε j h j (x, y), j = 1 . . . m − r.

If the parameters ε j are small and the functions f (x, y) and h(x, y) are of the same
order, we can see that the dynamics in y act on a much faster timescale than those in
x. Now, let us assume that a trajectory of the system in the directions yi tends to some
finite value. This is somewhat implied by the form of the equations we have chosen.
The system reaches this valuemuch faster than the dynamics in the xi directions have
time to act. We make the approximation that the system reaches its static y value
instantaneously by setting d y/dt = 0. The quasi-steady state value of this system,
yst(x), is termed the slow manifold, and is the solution to the equations

− [
yst

]
j + ε j h j (x, yst) = 0. (2.83)

The reduced system in r variables is then given by

dxi

dt
= fi (x, yst), i = 1 . . . r. (2.84)

In the course of this thesis, the term ‘slow subspace’will be used to refer to a subspace
in which the deterministic system moves at a slower rate than in the other subspaces.
The term centre manifold will be used to refer to a subspace upon which there are
strictly no deterministic dynamics. The introduction of the term ‘slow subspace’ is

http://dx.doi.org/10.1007/978-3-319-21218-0_1
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motivated by the fact that within the mathematical literature the slow manifold has a
much more strict definition5 [1]. The field of deterministic dimensional reduction is
a vast one however, and an attempt will not be made to fully adhere to the rigorous
definitions detailed in such work. Instead, physical intuition will be used to help
guide the analysis and interpretation.

Much of the original work that follows this chapter is concerned with how to
appropriately remove fast degrees of freedom from stochastic systems. In the intro-
duction it was merely stated that the generalisation to stochastic systems was not
straightforward. Now, with the appropriate mathematical tools and theory in hand,
we will briefly see why this is the case, before an outline of some of the existing
theory in this area is given.

Since the formulation of the problem has first been discussed in the deterministic
setting, an obvious starting point is to consider the stochastic system in terms of
SDEs. Indeed this is particularly useful since it is in this setting we will later work.
Let us begin, as many authors do, with a consideration of the problem of a particle
at position x in a potential U (x), which is subject to noise [15, 42]. A deterministic
example of this system, with a quartic potential, was given in the introduction (see
Eq. (1.11)). Setting the mass equal to one, this system can be expressed as the SDEs

dx

dt
= v, (2.85)

dv

dt
= −βv − U ′(x) + η(t),

where U ′(x) is the potential gradient, β is the coefficient of friction and η(t) is
zero mean Gaussian white noise with correlations 〈η(t)η(t ′)〉 = δ(t − t ′)βD. If
β is sufficiently large, the SDEs have an analogous form to Eq. (2.82). Mirroring
the deterministic approach, one can argue that after a comparatively short time,
dv/dt = 0. Solving for v we find

v = β−1 (−U ′(x) + η(t)
)
, (2.86)

and therefore the reduced system is described by

dx

dt
= −β−1U ′(x) + β−1η(t). (2.87)

The corresponding FPE is given by

∂ p(x, t)

∂t
= 1

β

{
− ∂

∂x

[−U ′(x)p(x, t)
] + D

∂2

∂x2
[p(x, t)]

}
, (2.88)

5Formally, the slow manifold is defined by the collection of trajectories which are tangent to the
slow right-eigenvector at the fixed point, although in practice there is unlikely to be a closed analytic
expression for this surface.

http://dx.doi.org/10.1007/978-3-319-21218-0_1
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which is known as the Smoluchowski equation. We note that since the noise term is
additive, both the Itō and Stratanovich calculus lead to the same FPE. This method
will be referred to as direct adiabatic elimination, in the style of [42]. While in
this case we have been successful in reducing the dimensionality of the problem,
difficulties can be encountered when using this method. Among them are cases
where the equation for the time-evolution of the slow variable contains nonlinear
contributions. Say for instance, that we replace dx/dt = v with dx/dt = v2 in
Eq. (2.85). Substituting for the value of the fast-variable v from Eq. (2.86), one would
obtain an equation containing η(t)2. However it is very hard to attach either a physical
or a mathematical meaning to this object since the products of delta functions are
ill-defined. Therefore, while the method can be usefully applied in systems where the
entire system is linear in the fast-variables, in general other methods of fast-variable
elimination must be found. The existing literature on the subject can be coarsely split
according to the framework within which the stochastic system is represented; the
intuitive SDE formalism or the less mathematically problematic FPE formalism.

The more rigorously derived and well-known Haken slaving principle [20, 40,
41], and several other related methods [29, 50] are developed along similar lines
of reasoning as the direct adiabatic elimination method and suffer from the same
complications which arise from specifying the slow manifold in a stochastic sense.
A notable exception is [31], which deals with a particular model in which there is a
true centre manifold (that is, a surface on which there is no deterministic flow), and
applies a novel method in which stochastic perturbations away from the manifold
are assumed to instantaneously relax along the deterministic trajectories.

More mathematically rigorous work on SDE fast-variable elimination has been
conducted for stochastic analogues of normal form coordinate transformations. In
general, these seek to determine a nonlinear transformation which simultaneously
identifies the fast and slow directions in a controlled way, as well as guaranteeing the
absence of ill-defined noise terms. While perhaps the earliest example in the SDE
setting was [8], work has been significantly extended in the intervening years [1–
3, 44]. However, many of these transformations result in noise convolutions which
involve anticipating future unknown noise terms. Further work has proposed the
use of additive noise terms to emulate these convolution terms in the limit of long
times [6, 23, 43], though these methods are arguably less formal than the theory
they rest within. Perhaps the most significant advance in this area therefore came in
[39], with the construction of a methodology for stochastic normal form transform
that avoids such anticipating memory integrals in many cases, though even here
there remain many situations where a long time additive noise substitution must be
invoked. A body of work also exists on averaging and homogenisation techniques
[4, 36], although both have a more limited range of applicability than stochastic
normal forms [39] and the former has been shown in certain cases to be equivalent to
a stochastic normal form [43]. One of the biggest drawbacks of the work on normal
forms however is that it almost exclusively deals in SDE systems with uncorrelated
noise terms, whereas SDEs derived from underlying microscopic IBMmodels often
exhibit strong noise correlations.
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Other authors have focused onmaster or Fokker-Planck type equations as the basis
for fast-variable elimination. Themain advantage to working in this formalism is that
one avoids encountering the ill-defined noise terms which can present themselves in
the SDE setting. Much of the work in this formalism is heavily influenced by the
work of Zwanzig [53, 54], who proposed that a reduction of dimension could be
achieved through the application of projection operators, as illustrated by Gardiner
[14], and developed by others [47]. While other variants in the FPE setting have
been constructed [7, 28, 38], the projection operator technique remains the most
popular. The essential idea is to define a projection operator used to separate the
system into two spaces, those of the fast and slow directions. It is most instructive to
give a cursory description of the method with reference to the system described by
Eq. (2.85). The FPE for this system is known as Kramers equation [15]

∂ p(x, v, t)

∂t
= − v

∂

∂x
[p(x, v, t)] + U ′(x)

∂

∂v
[p(x, v, t)] (2.89)

+ β
∂

∂v
[(v) p(x, v, t)] + Dβ

∂2

∂v2
[p(x, v, t)] ,

which we can express in the more simple notation

∂ p(x, v, t)

∂t
= (L1 + βL2) p(x, v, t), (2.90)

where the operators L1 and L2 can be read off from the previous equation. The
aim is to find an equation for just x by solving an equation for v as a function of
x in the limit of large β. Essentially it is assumed that an approximate solution to
Eq. (2.90) will be formed from the marginal distribution p(x, t) = ∫

p(x, v, t)dv

and the stationary distribution in the limit of large β, L2 peq(v) = 0. This idea is
formalised by introducing a projection operator, R(x, v), such that when applied to
a function f (x, v) one obtains

(R f )(x, v) = peq(v)

∫
f (x, v)dv. (2.91)

Applying R(x, v) to p(x, v, t) one then obtains

(R P)(x, v) = peq(v)p(x, t), (2.92)

where p(x, t) is the marginal distribution. Applying R(x, v) to Eq. (2.90) and then
separately applying the operator (1 − R) one obtains two separate PDEs for the
system. The aim is then to solve the second PDE in such a way as to obtain an
equation for p(x, t). In this particular case it can be shown that the reduced FPE does
indeed converge to Eq. (2.88) in the limit of infinite β [42]. However, the procedure
is by no means straightforward; the resulting reduced FPE has a non-Markovian
character which can only be eliminated by a careful consideration of the limiting
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behaviourwith respect toβ. A correct treatment only begins to become clear by either
introducing a highly non-linear change of variables [42] or by utilising a Laplace
transform. It is perhaps testament to the difficulty of working in this formalism, that
the first attempt to derive the Smoluchowski equation as the limiting form of the
Kramers equation was given (albeit incorrectly) by Brinkman in 1956, while the first
correct treatment was given by Stratanovich in 1963 [45] and again independently
by Wilemski in 1976 [51] and Titulaer in 1978 (the reader is referred to [15] for
a complete discussion). The complexity of working in this methodology increases
massively as one encounters systems with multiplicative noise and correlated noise.
Additionally, many systems exist in which the large or small factor is not factorisable
in as convenient form as Eq. (2.90), leading to further complications. Unfortunately,
the details of these methods are cumbersome, especially in cases where the fast
degrees of freedom are distinct from the natural basis of the problem.

The difficulties encountered in two of the main areas of research into fast-
variable elimination have been discussed. In the SDE formalism one has to work
very hard to avoid introducing ill-defined noise terms and systematically eliminate
non-Markovian effects. In the FPE formalism, the mathematical manipulations are
better defined, but one loses all sense of physical intuition so that progress becomes
difficult. In both settings, the reduced system often ends up taking a very complicated
form for most cases of interest. Moreover, it could be argued that in both streams of
the literature a fundamental and practical question is often avoided; what advantage
is gained by replacing a moderately complicated system in many variables with a
more complicated system in fewer variables?

2.9 The Moran Model

So far this chapter has been primarily concerned with the more technical aspects of
stochastic theory and fast-variable elimination. Chapters4 and 5 will focus on the
application of fast-variable elimination to a model inspired by the Moran model.
A slightly more in depth discussion of the Moran model and its variants in thus
called for, along with an historical overview of the relevant areas of mathematical
population genetics.

It is often said that there are four main processes which drive the evolution of
a population: genetic drift, mutation, selection, and migration [21]. A model which
incorporates stochastic effects address the first of these issues, as was first illustrated
by Fisher and Wright who considered simple stochastic processes in systems where
the population size, N , was finite—the Wright-Fisher model [13, 52]. Subsequent
work tended to follow their original approach, assuming discrete generations and
discrete state variables (corresponding to the number of individuals in the population
of a particular type) [10]. However as more details are added into these models, their
discrete-time nature can make an analytic treatment difficult [11].

http://dx.doi.org/10.1007/978-3-319-21218-0_4
http://dx.doi.org/10.1007/978-3-319-21218-0_5
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Progress can be made however if one considers an analogous model in continuous
timewith individual birth-death events, theMoranmodel. In the Introduction, a verbal
description of the neutral Moranmodel was presented, while throughout this chapter,
the specific example of a Moran model with mutation (see Eq. (2.16)) was used to
used to illustrate some of the methods and ideas of stochastic theory. In Sect. 2.4 we
saw what makes this model more amenable to analysis; it is formulated as a master
equation with small ‘jumps’ from one state to another, allowing the expansion of the
master equation to be conducted, which results in an FPE for the system dynamics.
This approximation, although originally suggested by Fisher [12], was popularised
by Kimura [9, 26], and proved to be a powerful tool and the starting point for many
studies of more complex processes in population genetics [24, 25, 27].

We recall that the neutral Moran model is a model for pure genetic drift described
by probability transition rates (1.9). As we have defined it, it consists of two types of
individual, labelled A and B. In the nomenclature of population genetics these types
are called alleles, which are loosely traits which an individual can carry. If onewished
to model the Mendellian genetics of a human population, each individual could be
modelled as having two alleles, reflecting the two sets of genetic data available from
two chromosome sets [18]. Throughout this thesis we will deal exclusively with
models in which each individual carries only one allele. These are referred to as
haploid (as opposed to diploid) models. Mutation can be added to the Moran model,
as in Eq. (2.16).6 We now turn our attention to the third evolutionary process on our
list, selection.

Before proceeding, we note that the designations A and B for the allele types may
appear slightly confusing when presented simultaneously with the drift and diffusion
terms of the FPE, A(x) and B(x). This notation has been chosen for consistency
with the population genetics literature in the first instance and the physics literature
in the second. In order to avoid confusion, the drift and diffusion terms will always
be presented with their functional dependence.

2.9.1 The Moran Model with Selection

Selection is the process by which the constitution of a population changes according
to some bias. The fitness of an allele within the population is a measure of this bias.
Of course, this leaves the term fitness as something of an umbrella label, embodying
many potential mechanisms, some of whichwill be explored in Sect. 6.3. Throughout
this thesis, when dealingwith theMoranmodel, frequency-independent (or absolute)
fitness will be considered, that is fitness that is independent of the constitution of the
population [34].

Within the scope of the Moran model, matters are complicated slightly by the
rather artificial nature of the model. In order to maintain a fixed system size N ,

6The way in which mutation is incorporated is of course by no means unique. Mutation could for
instance be coupled to birth and death. Some of these ideas are explored in [5].

http://dx.doi.org/10.1007/978-3-319-21218-0_1
http://dx.doi.org/10.1007/978-3-319-21218-0_6
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birth and death events are coupled. Therefore increasing the birth rate necessarily
increases the death rate. Let us introduce the parameters bA as the birth rate of allele
A and bB as the birth rate of allele B. The transitions rates are then

T (n + 1|n) = bA
n

N

(N − n)

N − 1
, (2.93)

T (n − 1|n) = bB
(N − n)

N

n

N − 1
. (2.94)

We now ask, what is the total birth/death rate of the population? Here we must bear
in mind that in our formulation of the master equation, we have only taken (and need
only take) account transitions which change the state of the system. However there
are of course two other processes implicitly assumed to be taking place; allele A
reproducing to replace another allele A and likewise for allele B. The time at which
any reaction occurs is of course a stochastic variable, but as was shown in Sect. 2.3,
it is exponentially distributed and characterised by the sum of all possible reactions
(see Eq. (2.23)). The sum of all transitions in this instance can be expressed as

4∑
μ=1

Tμ(n + νμ|n) = 1

N (N − 1)

{
bAn [(n − 1) + (N − n)]

+ bB(N − n) [(N − n − 1) + n]

}
,

= 1

N
[bAn + bB(N − n)] . (2.95)

The birth/death rate changes according to the constitution of the population. If all
the population is comprised of individuals carrying allele A, n = N and the mean
birth/death rate is bA while if the entire population is B the mean birth/death rate is
bB . While at first glance this seems like a reasonable result, it suggests that the ‘fittest
type’ would reproduce quickly, but also die quickly. Essentially this is an unnatural
pathology of a model which requires that the system size is fixed. We can avoid this
behaviour if instead we ask that bA and bB are weighted such that the mean birth
rate of the population is fixed to be one;

bA = NwA

nwA + (N − n)wB
bB = NwB

nwA + (N − n)wB
. (2.96)

In this way the fitter type in some sense has a ‘greater share’ of a fixed birth rate.
It is in this fashion we choose to work, with the parameterswA andwB introduced

to represent the fitness weightings of alleles A and B respectively [35]. The transition
rates are then

T (n + 1|n) = nwA

nwA + (N − n)wB

(N − n)

N − 1
, (2.97)
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T (n − 1|n) = (N − n)wB

nwA + (N − n)wB

n

N − 1
. (2.98)

The appearance of n in the denominator complicates the expansion of the master
equation slightly. This is usually addressed by rewriting the fitness parameterswA =
1+s andwB = 1, and expanding in powers of s under the very reasonable assumption
that s is small. Positive s indicates a small fitness advantage for individuals with allele
A. The expansion is carried out for amore general case inAppendixC.One can obtain
the results required in this instance by setting D = 1 in the appendix.

An expansion of the master equation leads to the FPE (2.30) with m = 1 and
A(x) and B(x) given respectively by

A(x) = sx(1 − x) and B(x) = 2x(1 − x), (2.99)

for small s. Herewe have included only the lowest order contribution in s to A(x), and
omitted the order s correction in B altogether, since it will be negligible compared
with 2x(1 − x). We note that in the case s = 0 we obtain the neutral model. In the
samemanner as in Sect. 2.5.2,wefind equations Eqs. (2.59) and (2.52),with A(x) and
B(x) given by Eq. (2.99), for the fixation probability of type A, Q(x0) = Qa2(x0),
and the unconditional fixation time T (x0) as a function of x0, the initial concentration
of allele A.

In this case, solving Eq. (2.59), the familiar expression for the probability of
fixation, Q(x0), is found [11]:

Q(x0) = 1 − exp (−Nsx0)

1 − exp (−Ns)
. (2.100)

While the mean time to fixation can also be obtained analytically (see Eqs. (5.12) and
(5.13) with M set to N and σ set to s, and Appendix E), it is sufficient to determine
it numerically. Illustrative plots are shown in Fig. 2.3.

Fig. 2.3 Probability of fixation of allele X , Q(x0), and mean time to fixation of either allele,
T (x0), in a system where allele A has a selective advantage s over allele B, as a function of initial
A concentration. While Q(x0) is obtained from Eq. (2.100), T (x0) has been obtained numerically

http://dx.doi.org/10.1007/978-3-319-21218-0_5
http://dx.doi.org/10.1007/978-3-319-21218-0_5
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2.10 Technical Background Overview

In this chapter, the fundamentalmathematical toolswhich are necessary to understand
the following research have been discussed. Let us briefly review how they relate to
the modelling process.

We began by reviewing the definition of Markov process, which we verbally
described as onewhich has nomemory.Clearly howevermany real-world systems are
non-Markovian. In Sect. 2.1 a simple example of such a system was given, however
there are many other examples; when considering reproduction in a population, it
could cogently be argued that there is a correlation in time between reproduction
events, that a single reproduction event at time t makes another at time t + �t less
likely. However, if this time is sufficiently small it can be argued that the effect
is negligible (effectively another fast-timescale approximation). It may be true that
“Non-Markov is the rule,Markov is the exception” [48], but the benefits of simplicity
and tractability garnered from treating the process as Markov often outweigh those
gained from a more detailed treatment.

In Sect. 2.2, we went on to treat aMarkovmodel in continuous time. This required
defining a set of time-independent probability transition rates describing the prob-
ability per unit time of moving state. While the master equation provides a total
description of the system, we noted that it was in most cases very difficult to solve.
Two methods of making progress were then proposed. In Sect. 2.3, the Gillespie
algorithm was introduced. While this provides stochastic realisations whose statis-
tics obey the master equation, it does not provide any meaningful understanding
of an underlying model. It therefore best serves as a comparative tool for analytic
approximations and solutions of the master equation. To make analytic progress a
system-size expansion of the master equation was detailed, an approximation which
allows the system to be described as an FPE in as many variables as there are species
in the system. The equivalent SDE form of the FPE was then given in Sect. 2.6, since
this form will often be used in this thesis for intuitive reasons.

In the penultimate section, Sect. 2.8, we arrived at the crux of the thesis; the
removal of fast-variables in stochastic systems. Here the origins of the problem in a
mathematical sense were discussed, along with the limitations of existing work. In
particular, attention was drawn to one of the fundamental problems many existing
methods fail to address; a simplification of a problem via a reduction in the number
of variables which comes at the cost of its over-complication in other regards, is often
little simplification at all.

Throughout this chapter, reference was made to the Moran model and one of its
many variants, the Moran model with mutation. This is because a model of its ilk is
the subject of much of the thesis. In order to place this work in context, the Moran
model was discussed from a more historical standpoint in Sect. 2.9. In this section
an additional variant of the model was also introduced which includes the effect of
selection.

In what follows, I will introduce two methods of simplifying stochastic prob-
lems with a separation of timescales. Both procedures are mathematically explicit,
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straightforward to apply, and address the effect of correlated noise terms. In Chap.3
the first of these approximations will be introduced, the conditioning method. To
begin I develop the method with the aid of a simple illustrative example with an
ecological interpretation in Sect. 3.2, before providing a general formulation. The
results from this example demonstrate the success of the approximation scheme
even in regimes where the fixed point is weakly unstable. In Sect. 3.4 the method
is applied to an epidemiological model with seasonal forcing. This model has been
identified as suffering from the technical numerical difficulties associated with a
large separation between eigenvalues. It will be shown how the method may be used
in tandem with the LNA to provide a very good approximation to results coming
from stochastic simulations.

In Chap.4 the second of the methods will be introduced, which shall be referred
to as the projection matrix method. In particular, I investigate the method applied to a
generalisation of the Moran model which incorporates migration between a number
of well-mixed populations. Birth and death events are later moderated by a weak
selection pressure. The technique allows the equations for the system (in as many
variables as there are islands) to be reduced so that they resemble those for a single
island, which are amenable to analysis. Once again, the idea behind the method is
simple, its application is systematic, and the results are in very good agreement with
simulations of the full model for a range of parameter values.

Following the reduction of themetapopulationMoranmodel, Chap.5 is devoted to
analysing the reducedmodel, and comparing it to the results obtained from stochastic
simulation. A rich array of behaviour is found, all of which is well predicted by the
reduced system.

Chapter6 contains work which extends and connects that in the previous chapters.
This includes incorporating mutation into the Moran model with migration, drawing
links between the conditioningmethod and the projectionmatrixmethod and looking
at the possibility of relaxing the fixed system size assumption inherent in the Moran
model.
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Chapter 3
The Conditioning Method

In this chapter the conditioning method is introduced. The core of the approach is
to examine the behaviour of a stochastic system in the SDE framework under the
condition that its trajectories are confined to the slow subspace of the deterministic
version of the system. A similar procedure has been applied in previous works in the
analysis of noise induced speciation [11, 12]. Inspired by this success, the method
is generalised here for applications to a broader range of systems. I also highlight
how the method can be especially useful in some specific instances. Because a static
description of the slow subspace is used (as opposed to a stochastic description, as
in Eq. (2.86)), the method is applicable to a broader range of systems than the direct
elimination procedure or the Haken slaving principle. Moreover, the procedure is
mathematically explicit, straightforward to apply, and addresses the effect of corre-
lated noise terms. One also gains a sense of physical intuition as to the behaviour of
the system, which is arguably not present in the FPE setting.

I will also show how the conditioning method can be effectively combined with
other stochastic approximation techniques, such as the linear noise approximation
(LNA) [18]. In the context of the LNA, slow subspaces can be a malign presence.
This is because the effect of the slow subspace on the LNA is often to introduce
small eigenvalues in the resulting linear SDE. If some eigenvalues of the SDE are
close to zero, then the fixed point about which the LNA linearises is only weakly
stable, and it may be possible for stochastic fluctuations to carry the system very
far from this fixed point, perhaps even into another steady state. In situations such
as this, the true non-linear nature of the model is important. Additionally, a large
separation between eigenvalues can in some situations lead to theoretical solutions
becoming numerically ill-conditioned. Both of these effects can lead to a very poor
agreement between stochastic simulations and the LNA theory. It will be seen that
the conditioning method can help address both these issues.

In the following section, amethod for determining the existence of slow subspaces
and their approximate analytic form is introduced. Next, in Sect. 3.2, the conditioning
method is developed with the aid of a simple illustrative example with an ecological
interpretation, before a general formulation is provided. The results from this example
demonstrate the success of the approximation scheme even in regimeswhere the fixed
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point is weakly unstable. In Sect. 3.4, the general formulation of themethod is applied
to an epidemiological model with seasonal forcing. This model has been identified as
suffering from the technical numerical difficulties associated with a large separation
between eigenvalues [13]. It will be shown that the conditioning methodmay be used
in tandemwith the LNA to provide a very good approximation to results coming from
stochastic simulations.

3.1 Identifying the Deterministic Slow Subspace

Even in a deterministic system, it is not necessarily the case that models featuring
a separation of timescales will present themselves in such a convenient form as
Eq. (2.82). In these equations, the fast-variables were explicitly given by y, but in
general the fast directions may not be parallel to the basis of the problem. One
may then ask, how can one easily identify a separation of timescales in an arbitrary
problem? Let us consider problems in which the system has a known stable fixed
point, but a separation in timescales is not necessarily evident on first appraisal:

dx
dt

= A(x). (3.1)

We may linearise this equation about the fixed point x∗ to obtain an equation of the
form of Eq. (2.74). The solution to the linearised equation is of the same form as
Eq. (2.72), and gives an approximate solution to the full system close to the fixed
point [17]. From this, we learn that if v(i) is a right-eigenvector of the Jacobian J , with
eigenvalue λ(i), then perturbations in the direction of v(i) will grow exponentially if
Re[λ(i)] > 0 and shrink exponentially if Re[λ(i)] < 0. If however, the eigenvalues
satisfy

Re[λ(m)] < · · · < Re[λ(r+1)] � Re[λ(r)] < · · · < Re[λ(1)] ≤ 0 (3.2)

a separation of time-scales exists; perturbations in the direction of the right-
eigenvectors v(r+1), . . . , v(m) will decay extremely rapidly in comparison with those
in the directions of v(r), . . . , v(1). We have thus identified a set of fast directions in
the linear system. Let us introduce the r new slow variables ξz and the m − r new
fast-variables ξw. For simplicity, let us begin by supposing that all the eigenvalues
and eigenvectors are real. We can transform into the new fast-slow basis of the linear
system’s right-eigenvectors via the matrix V = [v(1), . . . , v(m)];

(
ξz
ξw

)
= V −1ξ. (3.3)

http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
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Applying this to the linear system Eq. (2.74) and utilising the eigendecompostion
relation � = V −1 J V , where � is the diagonal matrix whose i th entry is λ(i), we
find the new linear system is described by

d

dt

(
ξz
ξw

)
= �

(
ξz
ξw

)
. (3.4)

Given the eigenvalue relations in Eq. (3.2), we see clearly that this linear system has
the same form as Eq. (2.82).

How can one proceed with the full nonlinear system? We begin by introducing r
variables z and m − r variables w such that(

z
w

)
= V −1x, (3.5)

to arrive at the set of nonlinear ODEs

d

dt

(
z
w

)
=
(

Az(z,w)

Aw(z,w)

)
, (3.6)

with (
Az(z,w)

Aw(z,w)

)
= V −1 A(V (z,w)T ). (3.7)

In the region of the fixed point, the bases of z and w are parallel to the slow and fast
directions respectively. To make progress, we approximate the slow subspace [1] by
the surface on which the rate of change in the direction of the fast eigenvector is
zero. Formally this is known as the nullcline for w [17]. These equations may then
be treated in a way analogous to Eq. (2.82), with the nullcline solution for w(z),

Aw(z,w(z)) = 0, (3.8)

used as an approximation for the slow subspace in the new coordinates. Indeed, we
will find that it often provides an excellent representation, even far from the fixed
point.

If the system contains complex eigenvalues and eigenvectors, one may proceed
as above with only a few minor changes. The transformation matrix V is redefined
such that each column is an eigenvector only if that eigenvector is real. If a complex
eigenvector pair v(k) and v(k+1) = [

v(k)
]∗

is encountered, one introduces the new
real eigenvectors h(k) = (

v(k) + v(k+1)
)
and h(k+1) = i

(
v(k) − v(k+1)

)
, and uses

these as the columns of V . Applying the transformation to the linear system no
longer results in a system governed by the diagonal � in Eq. (3.4), but rather a block
diagonal matrix [16]. An example of such a case will be given in Sect. 3.4.

http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
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48 3 The Conditioning Method

3.2 Illustrative Example

To illustrate the method, we explore the behaviour of a simple ecological model
of two interacting populations, labelled X and Y . Individuals of both populations
reproduce with rate one, and there is a small probability μ of the offspring mutating
from one type to the other. The organisms also prey on each other with rate ε and
have a slight preference p for prey of the opposite type. The model is most intuitively
expressed in the notation of chemical reaction systems (see Eq. (2.34)):

Reproduction: X
1−μ−−−→ X + X, Y

1−μ−−−→ Y + Y

Mutation: X
μ−−−→ X + Y, Y

μ−−−→ X + Y

Predation: X + Y
ε(1/2+p)−−−→ X, X + Y

ε(1/2+p)−−−→ Y

Cannibalism: X + X
ε(1/2−p)−−−→ X, Y + Y

ε(1/2−p)−−−→ Y. (3.9)

We recall that arrows denote possible reactions and the values above them are the
rate constants. Writing nX and nY for the number of individuals in each population,
the transition rates T (n|n′) can be derived from the reactions (3.9) using Eqs. (2.34),
(2.35). They are

T (nX + 1, nY |nX , nY ) = (1 − μ)nX + μnY

T (nX , nY + 1|nX , nY ) = μnX + (1 − μ)nY

T (nX − 1, nY |nX , nY ) = ε(1/2 − p)n2
X + ε(1/2 + p)nX nY

T (nX , nY − 1|nX , nY ) = ε(1/2 + p)nX nY + ε(1/2 − p)n2
Y . (3.10)

The model may now be mathematically formulated as the master equation (2.18),
which describes the time evolution of the probability distribution P(nX , nY , t).
Stochastic simulations of the model can be performed using the Gillespie algo-
rithm [7] described in Sect. 2.3.

When the predation rate ε is small, the population may grow very large. The
parameter ε is thus analogous to the parameter N−1 utilised in the expansion of
the master equation in Sect. 2.4. One can therefore introduce the scaled variables
x = εnX and y = εnY and perform this expansion to yield an effective description
of the system in terms of an FPE. In order to derive the precise form of the FPE, one
first expresses the transition rates given in Eq. (3.10) in terms of the continuous x
and y variables. This yields a set of functions fμ(x, y) for μ = 1, . . . , 4. Obtaining
the stoichiometry matrix from Eq. (3.9), the drift and diffusion terms in the FPE can
then be read off from Eqs. (2.31) and (2.32) respectively. As discussed in Sect. 2.6,

http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
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this FPE is entirely equivalent to a set of SDEs. For the present model, we find the
following pair of equations:

dx

dt
= x − μ(x − y) − x

[
1

2
(x + y) − p(x − y)

]
+ √

εηx (t),

(3.11)
dy

dt
= y + μ(x − y) − y

[
1

2
(x + y) + p(x − y)

]
+ √

εηy(t),

where ηx and ηy have the correlation structure specified in Eq. (2.69), with

B =
(

x + 1
2 x(x + y) − (px + μ)(x − y) 0

0 y + 1
2 y(x + y) + (py + μ)(x − y)

)
.

(3.12)

We begin by examining the deterministic system found by putting ε = 0. There
is a trivial fixed point at x∗ = 0, y∗ = 0, representing the extinct state, which is
always unstable. There is a second fixed point at x∗ = 1, y∗ = 1, representing
equal coexistence of the two populations. This state is stable when p < μ. If p is
raised above μ, a bifurcation occurs, with the equal coexistence fixed point becoming
unstable and giving rise to a symmetric pair of stable fixed points inwhich one species
dominates the other. The new fixed points have coordinates

x∗ = 1 − 2μ ± √
(1 − μ/p)(1 − 2μ)

1 − 2p
, y∗ = 1 − 2μ ∓ √

(1 − μ/p)(1 − 2μ)

1 − 2p
.

(3.13)
We are interested in examining the effect of noise near this transition.

The eigenvalues of the Jacobian at the coexistence state are λ(1) = 2(p − μ) and
λ(2) = −1, with corresponding right-eigenvectors v(1) = (1,−1) and v(2) = (1, 1).
If |λ(1)| � |λ(2)| then we have a slow subspace in the direction of (x − y), meaning
that perturbations to the balance of populations evolve very slowly. As described
in Sect. 3.1, we approximate the slow subspace by the surface on which the rate of
change in the direction of the fast eigenvector is zero. In the present model, the slow
subspace is approximated by dx/dt + dy/dt = 0 which yields the hyperbola

(x + y) − 1

2
(x + y)2 + p(x − y)2 = 0. (3.14)

The two plots in Fig. 3.1 capture the typical behaviour of the model for parameters
either side of the bifurcation.

The SDE system (3.11) is two-dimensional, non-linear and has noise correlations
which depend on the state of the system. These factors combine to make the theoret-
ical analysis of the model very difficult. The situation is not hopeless, however, as it

http://dx.doi.org/10.1007/978-3-319-21218-0_2
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Fig. 3.1 These plots show the behaviour of the illustrative ecological model on either side of the
bifurcation. The fixed points are shown as red circles, and the dashed red line is the nullcline
dx/dt + dy/dt = 0, given in Eq. (3.14). Qualitatively, it can be seen to give a good approximation
to the observed slow subspace. The grey arrows show trajectories of the deterministic system, while
the black line traces out the trajectory of a single (short) stochastic simulation of the individual-
based model, starting close to the origin. The parameters are ε = 0.005 and p = 0.3 in both plots,
while μ = 0.35 on the left and μ = 0.25 on the right

is clearly visible from Fig. 3.1 that the system state does not typically stray very far
from the slow subspace. It is this fact which we aim to exploit in order to produce an
‘effective’ one-dimensional description of themodel. The plan of attack is as follows:
first we will make a coordinate transform to separate the fast and slow variables; then
we will examine the behaviour of the slow variable under the assumption that the
fast variable relaxes instantaneously to its nullcline value.

We introduce z = (x − y)/2 and w = (x + y)/2, so that

(
z
w

)
= 1

2

(
1 −1
1 1

)(
x
y

)
≡ V −1

(
x
y

)
, (3.15)

where the matrix V is the matrix whose i th column is the i th right-eigenvector of
the system’s Jacobian, as discussed in Sect. 3.1. In the new coordinates Eq. (3.11)
becomes

dz

dt
= z [1 − 2μ − (1 − 2p) w] + √

εκz(t),

dw

dt
= w − w2 + 2pz2 + √

εκw(t), (3.16)

and Eq. (3.14) can be rewritten w − w2 + 2pz2 = 0.
To determine the correlation structure of the new noise variables κz and κw, a

general result on Gaussian random variables is applied. Suppose that a vector of
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Gaussian random variables η has correlation matrix B, and thatκ = V −1η for some
matrix V −1. What is the correlation matrix of κ? Well,

〈κiκ j 〉 =
〈∑

k,l

V −1
ik ηk V −1

jl ηl

〉
=
∑
k,l

V −1
ik 〈ηkηl〉V −1

l j = B̃i j , (3.17)

where B̃ = [V −1]B[V −1]T . In the present case, the matrices B and V −1 are given
in Eqs. (3.12) and (3.15), respectively. The following correlation matrix for κz and
κw is thus found:

B̃ = 1

2

( (
w + w2 − 2pz2

)
z [1 − 2μ + (1 − 2p)w]

z [1 − 2μ + (1 − 2p)w]
(
w + w2 − 2pz2

)
)

. (3.18)

Notice that whilst the original noise variables ηx and ηy were independent (the off-
diagonal entries of B were zero), the noise variables coordinates are correlated with
each other.

To enforce the assumed separation of time-scales between z and w, the following
conditions are imposed:

w(z) = 1

2

(
1 +

√
1 + 8pz2

)
and κw(t) ≡ 0. (3.19)

The first of these sets w to its value on the nullcline for a given z, whilst the second
removes the possibility of any noise-induced fluctuations. Since κw and κz are cor-
related, imposing κw = 0 will alter the statistical distribution of κz . What effect do
these constraints have on the evolution of z? Substitutingw(z) = (1+√1 + 8pz2)/2
into (3.16) to remove the dependence onw, and denoting noise drawn from the altered
distribution by ζ, we have

dz

dt
= Ā(z) + √

εζ(t), (3.20)

where

Ā(z) = z

(
1 − 2μ −

(
1

2
− p

)(
1 +

√
1 + 8pz2

))
, (3.21)

and 〈
ζ(t)ζ(t ′)

〉 = B̄(z)δ(t − t ′). (3.22)

Wemust now determine the effect of the conditions (3.19) on the correlation structure
of ζ, B̄(z).

Again a general result on correlated Gaussian random variables is applied (see
Appendix A). Suppose that a collection of Gaussian random variables κ has corre-
lation matrix B̃. Let B̄ be the correlation matrix of κz conditioned on the event that
κw = 0. Then utilising Eq. (A.28) we find
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B̄ = B̃11 − B̃21 B̃12

B̃22
. (Conditioningmethod). (3.23)

This is the correlation structure of ζ, which we can describe as the noise term κz

conditioned on κw = 0. Applying formula (3.23) to the correlation matrix found in
(3.18), we obtain

B̄(z) = 1

2

(
w(z) + w(z)2 − 2pz2

)[
1 − z2

(
1 − 2μ + w(z)(1 − 2p)

w(z) + w(z)2 − 2pz2

)2]
,

(3.24)

and where of course w(z) = (1 +√1 + 8pz2)/2.
Equations (3.20) and (3.22) together define a one-dimensional stochastic differ-

ential equation. Although it may look a little complicated, being one-dimensional
means that we can make analytic progress. The single-variable SDE can be mapped
back onto a one-dimensional FPE, and themethods discussed in Sect. 2.5 can be used
to answer questions about the behaviour of the system.

The full system has an absorbing boundary at (x, y) = (0, 0) (or equivalently
(z, w) = (0, 0)), while the remainder of the lines x = 0 and y = 0 (z = −w and
y = w) are reflecting.The system is otherwise unbounded. In the reduceddescription,
the system is restricted to the slow subspace. The boundaries of the reduced problem
are thus the points at which the slow subspace defined by Eq. (3.19) intersects the
boundaries of the full problem. In this case, the slow subspace intersects the reflecting
boundaries z = −w and z = w. Denoting the lower bound of z by a1, we find that
it must satisfy

1

2
(1 +

√
1 + 8pa2

1) = −a1,

=⇒ a1 = 1

2p − 1
. (3.25)

The upper bound a2 may be calculated in a similar way, resulting in a2 = −a1. We
now have all the information we need to calculate the stationary distribution of z
using Eq. (2.38).

In Fig. 3.2, the analytical prediction of the equation for the stationary distribution
is compared with a histogram of z-coordinates obtained from Gillespie simulations
using the same parameters as in Fig. 3.1. Clearly, the reduced one-dimensional model
provides a very good fit to the data coming from the individual-based simulation.
In Fig. 3.3, we use similar parameters to those in Figs. 3.1 and 3.2, albeit with the
parameter ε increased to ε = 0.08, to show that the approximation continues to work
well in systemswith large noise. It should also be pointed out that although the theory
has been developed based on the local behaviour around the coexistence fixed point
(1, 1), the approximation remains successful even in the unstable regime.

http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2


3.3 General Formulation 53

−0.5 0.5

1

2

z

pst(z)

−1 −0.5 0.5 1

0.5

1

z

pst(z)

Fig. 3.2 The stationary distribution of z = x − y as predicted by the reduced-dimension model
(black curve) andmeasured from a single long simulation run of the individual-basedmodel (orange
histogram). The parameters are the same as those in Fig. 3.1. The theoretical predictionwas obtained
by numerically integrating Eq. (2.38), with drift term (3.21), diffusion term (3.24), lower boundary
(3.25) and parameters taken from Fig. 3.1. Data points were collected from 10,000 simulations run
at time intervals of 100
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Fig. 3.3 The stationary distribution of z in the illustrative example. Once more the black curve is
calculated from the reduced model while the orange histogram is plotted with data obtained from
Gillespie simulation. The parameters are the same as those in Fig. 3.2 with the exception of ε which
is now given by ε = 0.08. The approximation continues to work well even in this regime of larger
noise

3.3 General Formulation

In this section, a description of themethod for an arbitrarym-species IBM is provided.
The model is first formulated as an m-dimensional master equation which describes
the evolution of the distribution P(n1, . . . , nm, t) (see Sect. 2.2). If the total number
of individuals N = ∑m

i=1 ni is large, it is natural to expand in the small parameter
ε = 1/N as detailed in Sect. 2.4, to arrive at an FPE in variables xi = ni/N . This
FPE can alternatively be expressed as an SDE of type Eq. (2.67). It is in this setting
that the reduction technique is applied.

Suppose we are interested in behaviour around a deterministic fixed point x∗.
Let J be the Jacobian of A(x) at that point and write λ(1), . . . ,λ(r), . . . ,λ(m) for its
eigenvalues. Suppose further that λ(r+1), . . . ,λ(m) are non-degenerate, real, negative
and large, so that the eigenvalues obey the inequalities given in Eq. (3.2). The associ-
ated right-eigenvectors v(r+1), . . . , v(m) represent very stable directions. We aim to
eliminate fluctuations in these directions to produce a reduced-dimension model. We
proceed as in the deterministic case (Sect. 3.1) by first making a change of variables

http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
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from the m-vector x to an r -vector z and an (m − r)-vector w, via the coordinate
transformation Eq. (3.5). In the new coordinates the SDE becomes

d

dt

(
z
w

)
= V −1 A

(
V

(
z
w

))
+ 1√

N
κ(t), (3.26)

where 〈
κi (t)κ j (t

′)
〉
= δ(t − t ′)

[
B̃(z,w)

]
i j

, (3.27)

and B̃ = [V −1]B[V −1]T . We wish to constrain w to the slow subspace which
we approximate by its nullcline, w(z), defined by Eq. (3.8). To enforce the assumed
separation of time-scales betweenw and the other variables, we impose the following
conditions:

w = w(z) and κi (t) ≡ 0 i = r + 1, . . . m. (3.28)

In order to implement the method, w(z) must be obtained analytically. However,
beginning from an IBM of the type described in Sect. 2.2, the resulting SDE system
will be polynomial in the state variables, typically of low degree. When the solution
for w(z) is not unique one may frequently eliminate alternative solutions based
on stability arguments. Notice that we are taking a static description of the slow
subspace. While it has been shown that a deterministic slow subspace does not, in
general, converge to the expectation of the stochastic slow subspace of generic SDEs
[10], the discrepancy is typically of the same order as the noise. Since the noise in
the IBM derived SDE model is small by construction (see Sect. 2.6), the deviation
from the deterministic slow subspace will be negligible.

For the remaining variables, we have

d z
dt

= Ā(z) + 1√
N

ζ(t), (3.29)

where 〈
ζi (t)ζ j (t

′)
〉
= δ(t − t ′)

[
B̄(z)

]
i j

, i, j = 1, . . . r. (3.30)

The drift vector Ā(z) and diffusionmatrix B̄(z) are derived from A and B̃ as follows.
For i = 1, . . . , r [

Ā(z)
]

i
=
[

V −1 A
(

V

(
z

w(z)

))]
i
. (3.31)

The general solution for the conditioned noise covariance matrix can be shown to be

B̄(z) = B11(z) − B12(z)B−1
22 (z)B21(z), (3.32)

http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
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where B are matrices of the partitioned B̃ matrix;

B̃ =
(
B11(z) B12(z)
B21(z) B22(z)

)
, (3.33)

withB11(z) an r × r matrix andB22(z) an (m − r)× (m − r) matrix (see Appendix
A). Equations (3.29) and (3.30) describe a reduced-dimension stochastic system in
which the fast directions associated with the eigenvalues λ(r+1), . . . λ(m) have been
eliminated.

3.4 Application: Seasonally Forced Epidemics

3.4.1 Model Definition and Deterministic Treatment

The SEIR model is a simplified epidemiological model describing the spread of a
disease through a population [9]. Members of the population may be in one of four
states: susceptible (S), exposed (E), infectious (I ) and recovered (R). The susceptible
individuals come into contact with the infected and become exposed with infection
rate β(t), which may vary with time. The choice of a time-dependent infection rate is
oftenmade in epidemiologicalmodels, in order to incorporate seasonal changes in the
contact rate between individuals. This is known as seasonal forcing. For instance, in
childhood diseases, the forcing can be representative of periods of school attendance
and holidays, while in general it may be brought about by the variation in time
spent indoors in crowded environments between winter and summer. Those exposed
to the disease then become infectious with a rate of disease onset α. Finally, the
infectious recover with an average rate of γ. In addition to these disease dynamics,
there is a constant birth and death rate μ; it is traditional to hold the population size
constant by treating death and birth as a single process whereby an individual returns
to the susceptible state. As in the earlier illustrative model, the dynamics may be
conveniently summarised using the notation of chemical reactions:

Infection: S + I
β(t)−→ E + I Incubation: E

α−→ I (3.34)

Recovery: I
γ−→ R Death/Birth: E, I, R

μ−→ S.

The variables nS, nE , nI , nR are used to denote the number of individuals in states S,
E , I and R, respectively. The total population size is then given by N = nS + nE +
nI +nR , which does not vary,meaning that there are three degrees of freedom,m = 3.
With just a slight abuse of notation we introduce variables S = nS/N , E = nE/N
and I = nI /N which describe the population density of individuals in each disease
state. Note that there is no need for a variable associated to the recovered state, since
the conservation of total population makes it a dependent variable. Applying the
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same master equation expansion as before (see Sect. 2.4 for details), the following
SDE system is obtained:

dS

dt
= μ(1 − S) − β(t)SI + 1√

N
η1(t),

dE

dt
= β(t)SI − (μ + α)E + 1√

N
η2(t), (3.35)

dI

dt
= αE − (μ + γ)I + 1√

N
η3(t),

where η1,2,3 are Gaussian white noise variables with correlations

〈
ηi (t)η j (t

′)
〉
= δ(t − t ′)Bi j ,

B =
⎛
⎜⎝

μ(1 − S) + β(t)SI −μE + β(t)SI −μI

−μE + β(t)SI β(t)SI + (μ + α)E −αE

−μI −αE αE + (μ + γ)I

⎞
⎟⎠ . (3.36)

In this section, the behaviour of the model in the deterministic limit N → ∞ is
discussed, before the full stochastic system is considered in Sect. 3.4.2. When the
infection rate is not seasonally forced, so β(t) ≡ β, there are a pair of fixed points.
The first of these represents the extinction of the disease: S = 1, E = 0, I = 0. The
second fixed point is

S∗ = (α + μ)(γ + μ)

αβ
, E∗ = μ(1 − S∗)

α + μ
, I ∗ = αμ(1 − S∗)

(α + μ)(γ + μ)
, (3.37)

which is referred to as the endemic state. We are concerned with the regime in which
the endemic state is stable and the extinct state is unstable, which holds for a range
of epidemiologically realistic parameter values. In general, the rate parameter μ
controlling birth and death will be much smaller than the remaining rate parameters
β, α and γ, since this takes place on a much longer timescale than the disease
dynamics. The parameter μ can therefore be utilised as an expansion parameter to
simplify some of the expressions in the analysis. To first order in μ, the eigenvalues
of the Jacobian at the endemic state are the complex-conjugate pair

λ(1,2) = −μ
α2β + βγ2 + αγ(β + γ)

2γ(α + γ)2
± i

√
μ

α(β − γ)

α + γ
, (3.38)

and

λ(3) = −(α + γ) − μ
α(2α + β) + 3αγ + 2γ2

(α + γ)2
. (3.39)

http://dx.doi.org/10.1007/978-3-319-21218-0_2
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Fig. 3.4 Deterministic trajectories for the SEIR model. Left No seasonal forcing (δ = 0), fixed
point shown in red. Right System in the presence of forcing, (δ = 0.02), limit cycle highlighted
in red. Remaining parameters in both plots are β0 = 1575 year−1, α = 35.84 year−1, γ = 100
year−1 and μ = 0.02 year−1, which are standard choices for measles [13, 14]

Notice that a separation of time-scales exists: Re[λ(3)] � Re[λ(1,2)], meaning that
λ(3) corresponds to a highly stable direction. In addition, since μ is small, the imagi-
nary parts ofλ(1,2) are typically larger than the real parts,meaning thatwemay expect
highly oscillatory trajectories in the neighbourhood of the endemic state.We can thus
expect the system to first collapse rapidly in the direction of the third eigenvector,
followed by a slow, almost-planar, spiralling decay to the endemic state, as shown in
Fig. 3.4. This separation of timescales has been previously noted and exploited in the
deterministic setting [15] and the stochastic setting using normal form techniques
[6]. However the stochastic analysis in [6] considered a quite different system (addi-
tive noise on an unforced system which was not derived from a microscopic IBM),
with very different objectives (namely the replication of stochastic trajectories).

Introducing seasonal forcing of the infection rate creates an additional layer of
complexity. A typical choice would be

β(t) = β0

(
1 + δ cos(2πt)

)
, (3.40)

where β0 describes the basal infection rate, δ is the forcing amplitude, and time is
measured in years. The deterministic system will now not settle to the endemic state,
but instead exhibit limit cycle behaviour. For the sake of simplicity, we will consider
only parameter values which result in a single stable limit cycle of period T = 1
year.

Similar to linear stability analysis of fixed points, there is a well-developed theory
for analysing perturbations around limit cycles. Writing (S∗(t), E∗(t), I ∗(t)) for the
limit cycle, we introduce the vector

ξ(t) = √
N

⎛
⎝ S(t) − S∗(t)

E(t) − E∗(t)
I (t) − I ∗(t)

⎞
⎠ , (3.41)
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where the factor
√

N has been introduced for notational consistency with later sec-
tions. Sincewe are effectively linearising the system, it should be noted that this factor
has no effect on the following analysis. To first order then, analogous to Eq. (2.74),
the dynamics of ξ are governed by

dξ

dt
= J (t)ξ, (3.42)

where J is the time-dependent Jacobian of Eq. (3.35). This equation may be solved
using Floquet theory [8]. The key result of the theory states that solution trajectories
may be decomposed into the product of a periodic vector with an exponentially
growing/decaying amplitude. General solutions are then of the form

ξ(t) =
m∑

i=1

ci q(i)(t)eσ(i)t , (3.43)

where m is the number of degrees of freedom in the model, ci is a constant, q(i)(t)
a periodic vector with the same period T as the limit cycle, and the value σ(i)

determining the rate of growth/decay is referred to as the Floquet exponent. Akin to
the eigenvalues of the fixed point Jacobian, Floquet exponents are indicative of the
stability of the limit cycle in the time-varying directions q(i)(t); perturbations to the
trajectory will grow if Re[σ(i)] > 0 and decay if Re[σ(i)] < 0.

Although this formalism may be carried through for much of the calculation
analytically, ultimately the Floquet exponents and periodic vectors will be obtained
numerically. Of course, other techniques exist to study driven systems [2, 5] and
Floquet exponents may be obtained in some cases through asymptotic expansions
in small amplitudes, but we wish to align our approach to the previous work on the
system which we will investigate below [13]. The procedure (detailed in Appendix
B) requires first computing a matrix whose columns are the independent solutions to
Eq. (3.42), X (t) = (ξ1(t) · · · ξn(t)), and then determining the eigenvalues of X (T ).
If there is a rapid collapse along a stable direction, followed by slow dynamics in
a subspace, then the columns of X (T ) will be almost linearly dependent, since all
solution trajectories quickly move towards the subspace. In turn, the real parts of
eigenvalues of the matrix X (T ) will differ by many orders of magnitude. Obtaining
these eigenvalues accurately is crucial to the remaining analysis. However, if the dis-
parity between the eigenvalues is too great, numerical procedures may not maintain
sufficient accuracy in calculations involving the eigenvalues. This problem was pre-
viously highlighted in [13] within an analysis of the seasonally forced SEIR model.
There, using the same epidemiological parameters as used in Fig. 3.4, the eigenval-
ues of X (T ) differed by a factor of 1059. This prompted the authors to implement
arbitrary precision numerical methods, at a considerable cost in computing time. It
is proposed that the general method detailed in Sect. 3.3 can be used as a technique
to remove this fast direction and hence circumnavigate the numerical difficulties
encountered in the analysis.

http://dx.doi.org/10.1007/978-3-319-21218-0_2
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3.4.2 Stochastic Treatment Exploiting the Slow Manifold

Beginning with the unforced case, we let λ(1), λ(2) and λ(3) be as in Eqs. (3.38) and
(3.39) and write v(1), v(2), v(3) for the corresponding eigenvectors.We introduce the
transformation matrix V = ((v(1) + v(2)) i(v(1) − v(2)) v(3)) and new variables

⎛
⎝ z1

z2
w

⎞
⎠ = V −1

⎛
⎝ S

E
I

⎞
⎠ . (3.44)

The Jacobian of the transformed system at the endemic fixed point takes the form

J̄ =
(

L 0
0 λ(3)

)
+ O(μ3/2), where L =

(
Re[λ(1)] Im[λ(2)]
Im[λ(1)] Re[λ(2)]

)
. (3.45)

The slow subspace for w is determined by transforming Eq. (3.35) into the form
Eq. (3.7) (with A taken from Eq. (3.35)) and applying Eq. (3.8) to obtain w =
w(z1, z2). An explicit form for w(z1, z2) can be found, though the expression is
more clearly expressed in S, E and I as

I = α(α + γ)E

γ2 + αβ0S
+ O(μ),

to leading order in μ. To capture the effects of stochasticity, we introduce variables
describing the fluctuations in the new coordinates, rescaled by a factor of

√
N ,

ξ̄ = √
N

(
z − z∗

w − w∗
)

. (3.46)

Making this substitution in (3.35) and keeping only first order terms in 1/N and μ,
we find that ξ̄ obeys

dξ̄

dt
= J̄ ξ̄ + κ(t), (3.47)

where

〈
κi (t)κ j (t

′)
〉 = δ(t − t ′)B̃i j , i, j = 1, 2, 3. (3.48)

The matrix B̃ is given by

B̃ =
[
V −1

]
B
[
V −1

]T
∣∣∣∣
(S,E,I )=(S∗,E∗,I ∗)

, (3.49)

where B is taken from Eq. (3.36). Note that applying the constraint w = w(z1, z2)
induces the relationship
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w∗ + ξ̄3√
N

= w

(
z∗
1 + ξ̄1√

N
, z∗

2 + ξ̄2√
N

)
. (3.50)

Expanding once more in large N , we find

ξ̄3 =
[
ξ̄1

∂w(z)
∂z1

+ ξ̄2
∂w(z)
∂z2

]∣∣∣∣
z=z∗

. (3.51)

After elimination of the fast direction, Eq. (3.47) becomes

d

dt

(
ξ̄1
ξ̄2

)
= L

(
ξ̄1
ξ̄2

)
+
(

ζ1(t)
ζ2(t)

)
, (3.52)

where ζ1 and ζ2 have correlation matrix B̄, which is related to B̃ by Eq. (3.32).
We move on now to study the situation of seasonally forced infection rate. In

principle, the calculations above apply only in the limit of small forcing amplitude
(that is, δ → 0 in Eq. (3.40)). We learnt in the illustrative ecological example,
however, that although our theory is developed to apply in the locality of a stable fixed
point, it can continue to provide a useful approximation if this condition does not
strictly hold. Applying that lesson to the present case, we modify Eq. (3.52) to allow
L and B̄ to become functions of time, as dictated by the replacement β �→ β(t).
Essentially, we are approximating the limit cycle by its components on the slow
subspace of the endemic fixed point of the unforced model, and then demanding that
any stochastic fluctuations remain on this slow subspace. The application of such a
coordinate change to the forced system can be further motivated by a consideration
of the periodic matrix J (t) in Eq. (3.42) in the limit of small forcing. While our
description of the slow subspace is time-independent, the possibility of a dynamic
slow subspace has been explored in the deterministic setting [4].

A Floquet analysis of the deterministic part of the reduced system finds two
complex conjugate Floquet multipliers, with the third disparate multiplier having
been eliminated from the system. This system no longer suffers from the numerical
difficulties which plague the full three-dimensional model.

To quantify the effect of stochastic fluctuations in this model, we follow the
standard procedure of computing the autocorrelation matrix C(τ ) of oscillations
around the limit cycle, which has entries

[
C(τ )

]
i j

= 1

T

∫ T

0

〈
ξ̄i (t)ξ̄ j (t + τ )

〉
dt. (3.53)



3.4 Application: Seasonally Forced Epidemics 61

0.5 1.0 1.5 2.0
10 5

10 4

0.001

0.01

0.1

frequency year 1

Po
w
er

Fig. 3.5 Power spectra for the fluctuations in the number of infected individuals about the limit
cycle. The analytical power spectrum calculated using the slow subspace approximation is plotted
in red, while the power spectrum from stochastic simulations is in blue. Agreement is such that
the spectra are difficult to distinguish; the spectrum from simulated results is primarily discernible
through its stochastic nature relative to the smooth analytical line. Dotted lines indicate the position
of the peaks in the power spectra given by Eq. (3.54). Epidemiological parameters are β0 = 1575
year−1, α = 35.84 year−1, γ = 100 year−1 and μ = 0.02 year−1. The simulated spectrum is
calculated as the average power spectrum of 1000 stochastic realisations, each lasting 200 years
with a system size of N = 108

Of course our reduced system (3.52) is two-dimensional, meaning that the entries of
C pertaining to ξ̄3 must be deduced from Eq. (3.51). The coordinate transformation
applied at the start in (3.44) may then be inverted to give the autocorrelation matrix
for the fluctuations in S, E and I .

The Fourier transform of the diagonal entries of the autocorrelation gives the
power spectrum of oscillations, which provides a convenient visualisation of the
stochastic fluctuations. In Fig. 3.5 we plot the power spectrum of fluctuations in
the number of infected individuals around the limit cycle, comparing the stochastic
simulations and the theoretical prediction using the reduced-dimensionmodel (3.52).
The agreement between the simulation and theory can be seen to be excellent; the
spectra lie virtually coincident. The peaks in the theoretical spectrum are found at
the same positions as those for the simulated spectrum. These are approximately
given by

ν j = j

T
± |Im[σ(1,2)]|

2π
, (3.54)

where j is an integer and σ(i) are the Floquet exponents as defined in Appendix B.
This is in agreement with [3, 13] where peaks at these positions were also found. The
overall benefit that was garnered by the procedure however was that of computational
efficiency. The computation of the theoretical power spectra approximated from the
reduced system takes only a small fraction of the computing time of the full system.
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3.5 Discussion

In this chapter I have introduced a systematic and general procedure to eliminate fast
degrees of freedom in stochastic dynamical systems derived from individual based
models. The method is inspired by the highly successful theory of slow manifolds in
deterministic systems, from which the basic notion of restricting attention to trajec-
tories occupying a low-dimensional subspace is borrowed. In the stochastic setting,
the conditioning method achieves this by enforcing the condition that the system
state remains fixed to the nullcline of the fast direction. This condition is applied
to SDE systems with correlated Gaussian white noise, so that a lower-dimensional
system is obtained in which the fast degree of freedom has been eliminated. Impor-
tantly, the reduced system has the same basic form as the original, meaning that
complicating factors such as non-Markovian processes or coloured noise have not
been inadvertently introduced.

In the first application, a nonlinear, two-dimensional system with multiplicative
noise is reduced to a one-dimensional systemwhich is amenable to analysis. The pre-
dictions from the model agree extremely well with simulations, as shown in Figs. 3.2
and 3.3. In the second application, that of the seasonally forcedSEIR epidemicmodel,
one of three degrees of freedom is removed. While this does not make the nonlinear
system any more tractable, it does aid the analysis of the linearised model. In this
case, the same timescale separation exploited in the reduction method is responsi-
ble for difficulties encountered when numerically calculating the power spectra of
the system linearised about the limit cycle. By removing the fast timescale, these
difficulties are avoided, with very little loss of precision (see Fig. 3.5).

While the conditioning method is successful in many cases, it is possible to con-
struct systems for which the conditioned dynamics are not qualitatively similar to
those of the full system. In particular, if the noise matrix B is singular, then elim-
inating the noise away from the manifold can lead to a system which is entirely
deterministic. It is instructive to consider a simple example of such a case, to demon-
strate how and why the method fails. We consider then the simple (if somewhat
artificial) linear SDE system with additive noise,

d

dt

(
x
y

)
=
(
0 1
0 −1

)(
x
y

)
+
(

η1(t)
η2(t)

)
, (3.55)

with η(t) as usual a zero mean Gaussian white noise process with noise correlation
matrix,

B =
(
0 0
0 b

)
, (3.56)

which is singular. The noise term η1 is then identically zero. This system was intro-
duced as an illustrative example in [10]. We proceed through the methodology out-
lined in Sect. 3.3 by identifying the eigenvalues and eigenvectors of the system. We
find in fact that a centre manifold exists, since
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λ(1) = 0, v(1) =
(
1
0

)
, λ(2) = −1, v(2) =

(−1
1

)
. (3.57)

The transformed variables are then given by

(
x
y

)
=
(
1 −1
0 1

)(
z
w

)
≡ V

(
z
w

)
, (3.58)(

z
w

)
=
(
1 1
0 1

)(
x
y

)
≡ V −1

(
x
y

)
. (3.59)

This leads to the dynamical equations

d

dt

(
z
w

)
=
(
0 0
0 −1

)(
z
w

)
+
(

κ1(t)
κ2(t)

)
, (3.60)

with noise correlation matrix

B̃ =
(

b b
b b

)
. (3.61)

The fast direction is clearly w, with the centre manifold being the plane w = 0.
Conditioning the noise to lie on this manifold leads to an equation for z

dz

dt
= 0, (3.62)

since the conditioned noise correlator is

B̄ = B̃22 − B̃12 B̃21

B̃11
= 0. (3.63)

The conditioningmethod therefore suggests that there are no dynamics, deterministic
or stochastic, in x = z − w. Following this example it is clear why the method
fails. The noise is conditioned to have no dynamics parallel to w, but if the noise
correlator B is singular, conditioning the noise to one dimension effectively kills off
any stochastic dynamics. It is perhaps interesting to note that this result is seen in
other stochastic fast-variable elimination techniques, as highlighted in [10].

The problem arising in this example is not usually an issue for SDEs derived from
IBMs, as their noise matrices are generally non-singular. To see this, note that the
noise matrix B may be decomposed as B = νRνT (see Eq. (2.32)), where ν is a
stoichiometricmatrix and R is a diagonalmatrixwhose entries are the rate coefficients
fμ(x). Since the rate coefficients are generally positive, rank(B) = rank(ν) and thus
B is singular if and only if there exists a vector q such that νq = 0. This is a linear
combination of reactants which is unchanged by any reaction, that is, a conservation
relation. Thus the rank of the noise matrix B is typically never less than the number
of degrees of freedom in the system.

http://dx.doi.org/10.1007/978-3-319-21218-0_2
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While this problem should not then be relevant for most IBM derived systems,
we would ideally like to use a method of fast-variable elimination for which we
do not need to be concerned with these issues. This leads to the second of the two
elimination schemes, the projection matrix method.
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Chapter 4
The Projection Matrix Method

In this section, a second method of fast variable elimination in stochastic systems
will be introduced. This method aims to remove the problems encountered in the
conditioning method when the noise matrix is singular (see Sect. 3.5). The essential
idea is to explicitly remove any contribution to the dynamics from the fast directions
and retain only the slow degrees of freedom. Since the methodology follows in
a straightforward way from the conditioning method, a verbal description of the
method is given in the following section, along with applications to some of the
models encountered in Chap. 3. The method is later applied to a Moran model with
migration, however for clarity some of the history of models of population genetics
featuring migration is given in Sect. 4.2, while the model pertaining to later work is
introduced in Sect. 4.3.

4.1 Introduction to the Projection Matrix Method

In the projectionmatrix method, as with the conditioningmethod, a stable fixed point
is assumed to exist. The system is then linearised about this point. The eigenvalues
of the linear system are used to inform us about the existence of a separation of
timescales, while the eigenvectors give the fast/slow directions. The slow subspace
is then calculated to be the deterministic nullcline of the fast directions, and we
evaluate the SDEs on this subspace. Thus far, the treatment is exactly the same as
for the conditioning method. The approach differs in its treatment of the noise. In
the projection matrix method, the component of the noise in the slow variables is
considered to be the only component relevant to the reduced system dynamics. All
other contributions are discarded. The approach is similar to that utilised in [22],
and the method can be formalised as the application of a linear projection matrix to
the SDE (along with the evaluation of the system on the slow subspace). It is from
this that the method takes its name. For clarity however, we avoid constructing the
projection matrix here.

© Springer International Publishing Switzerland 2015
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The idea is best illustrated on a familiar system, the ecological model of Sect. 3.2.
To make things particularly transparent we begin by considering the transformed
system in variables z and w (see Eq. (3.16)). Recall that the Jacobian in these vari-
ables (evaluated at (x, y) = (1, 1) =⇒ (z, w) = (0, 1)) is diagonal with entries
corresponding to the eigenvalues λ(1) = 2(p−μ) and λ(2) = −1. The slow subspace
is given by the deterministic solution to dw/dt = 0, Eq. (3.19). Now, as stated previ-
ously, in the projection matrix method we only wish to consider noise contributions
from the z-direction. In the z and w basis, the component of the noise in the slow
z-direction is simply B̃11 from Eq. (3.18). The projection matrix method therefore
gives the reduced dimension system

dz

dt
= Ā(z) + ζ(t), (4.1)

with Ā(z) once again given by Eq. (3.21) and the correlation function

〈ζ(t)ζ(t ′)〉 ≡ B̄(z)δ(t − t ′) (4.2)

= B̃11(z, w(z)). (Projectionmatrixmethod) (4.3)

While in some ways this seems a rather drastic simplification, it will be seen to fare
surprisingly well. Let us compare the predictions made by this reduced model to
those obtained the conditioned system, Eq. (3.20). Comparing the solutions for the
stationary distributions (evaluating Eq. (2.38)), very little qualitative difference can
be discerned (see Fig. 4.1), and both remain a good approximation for the simulated
IBM. A distinct advantage of this new method (in this particular case at least) is that
the functional form of the noise correlator (4.3) is far simpler; by coincidence, the
new noise correlator obtained using the projection matrix method is B̄(z) = w(z),
withw(z) taken from Eq. (3.19). This allows for an analytic solution of the stationary
distribution
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Fig. 4.1 The stationary distribution of the variable z from the illustrative example in Sect. 3.2, using
the same parameters as those in Fig. 3.2. The black line is obtained from a numerical solution of
Eq. (2.38) with drift and diffusion terms taken from Eqs. (3.21) and (3.24), i.e. the reduced system
from the conditioning method. The red dashed line meanwhile is obtained from Eq. (4.4) (via the
projection matrix method) appropriately normalised. In this particular case the results are nearly
indistinguishable, however we will see in Sect. 6.2 that this is not always the case
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pst(z) ∝ [w(z)]−((1−2μ)+2p)/2εp exp

[
(1 − 2μ)

εp
w(z) − (1 − 2p)

ε
z2

]
, (4.4)

plotted in as the red dashed line in Fig. 4.1 alongside the numerical solution for the
stationary solution of the conditioned system (3.20) in black.

Before proceeding to the next section, one more important example is considered;
the SDE system (3.55) given in the fast/slowbasis byEq. (3.60). Applying themethod
discussed above to this system, the reduced variable system

dz

dt
= ζ(t) (4.5)

is obtained, with 〈ζ(t)ζ(t)〉 = b, a result which retains the qualitative behaviour
of the full system (see Sect. 3.5). In many ways it seems surprising that such a
straightforward technique would work. However, there are other ways of interpreting
the method which are perhaps less jarring. Considering the results of Appendix A it
can be seen that the treatment of the noise (essentially ignoring all the components
related to the fast directions) is in fact equivalent to taking themarginal distribution of
the noise κz in Eq. (3.16) or Eq. (3.60), rather than the distribution of κz conditioned
onκw = 0.Expressed in thisway, the success of themethodmay seem less surprising.
However, since this interpretation does not aid the understanding of the mechanics
of the method, such a description will not be used in the remainder of this chapter.

In this section an outline of the method has been given, along with two ways
in which this arguably more naïve technique can be preferable to the conditioning
method. A more quantitative motivation for this approximation will be given in
Sect. 6.2, in which the two methods are compared more thoroughly. For now we
proceed to apply the projection method to a particular problem, a Moran model
with migration. In order to set the model in the appropriate context however, it is
best to begin with a brief discussion highlighting the ways in which migration has
historically been incorporated into the Moran framework.

4.2 The Moran Model with Migration

Models of population genetics featuring migration were first considered by Wright
[27], who looked at what is now often referred to as the standard island model [23].
Instead of the well-mixed population of size N which had been previously studied,
he considered a set of D well-mixed subpopulations. With migratory individuals
being chosen from the global population, there was no spatial structure assumed,
only interactions between the various subpopulations. These are called demes in
the genetic context [13], although we will also use the term islands in this thesis to
refer to areas in which there is no spatial structure, but between which interactions
can occur. Within the modern nomenclature of ecology, this collection of demes
effectively describes a metapopulation [16], or ‘population of populations’. The case
of one deme therefore should reduce to the well-mixed case.
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Subsequently, the formulation of the stepping stone model [15] introduced what
was avery simple topology into the descriptionofmigration; the islandswere ordered,
with migration from island i only allowed onto islands i − 1 and i + 1. Maruyama
compared selection in the stepping stone model and in the island model [17]. He
concluded that if selection was additive (i.e. frequency-independent) and local, with
the same selection pressure in all demes, then deme population structure played no
role. In other words, the population behaved approximately as a well-mixed and
spatially homogeneous population, with a size equivalent to the sum of the deme
population sizes.

The books by Ewens and Moran [9, 18] describe variants of these models, analy-
ses and conclusions, but for our purposes the next result of note is the work of
Nagylaki [19] who studied what would be in modern terminology an arbitrary net-
work of demes. He constructed a migratory model with discrete generations (of the
Wright-Fisher type) in the limit of strong migration, that is where the probability
of a migration event is of the same order as that of a birth or death event. The
effect of this assumption was to create a separation of timescales in the Markov
chain. Nagylaki then employed his earlier results on Markov chains with timescale
separation [8] to derive an equation in the diffusion limit. Starting with a neutral
model, it was concluded that in the long-time limit the population behaved as if it
were well-mixed, but with an effective population size less than or equal to the total
unstructured population. Equality was shown to be achieved if the migration matrix
was symmetric.

The analysis which is used to reach these conclusions is however difficult to
follow, with some parts of the proof relying on results from the theory of Markov
chains and others relying on the nature of the diffusion approximation. Nevertheless,
the results of the analysis are widely quoted. The work was extended [19] to the
case of different selection strengths on different islands, showing that once again the
population behaved as if it were well-mixed with an effective population size, but
now also with an effective selection coefficient. The situation where the selection
on different islands operates in different directions was not discussed. In this case,
within certain parameter ranges a stable fixed point emerges, allowing coexistence
of alleles deleterious in some demes, but advantageous in others. The deterministic
implications of this have been discussed in [10, 18, 20].

In the wake of this work a number of studies were carried out and a plethora
of results obtained, all with a variety of different approximations and objectives.
Several of these were concerned with an effort to determine the effective population
size, which amounts to a rescaling of time for the structured population. Here the
temptation to describe the results obtained in terms of an effective population size
will be avoided, due to its amorphous definition, and at timesmisleading designation.
The reader is referred to [6] for a review of suchwork. In turn, other work has focused
instead on the effect of migration on local deme properties [4].

The approach adopted in the following section will be to carefully define the
model in terms of individuals (i.e. at the microscale). Migration will be incorporated
in the form of a metapopulation model with explicit migration rates between each
subpopulation. The master equation for this can be written down in a systematic way



4.2 The Moran Model with Migration 69

[5], although it is too complicated to allow analytic progress to be made. As has been
indicated, the key to further progress is towrite down amesoscopic descriptionwhich
is achieved through a diffusion approximation, itself derived by expanding themaster
equation in inverse deme size. The resulting FPE is still difficult to solve; a model
with migration betweenD demes which includes selection, leads to a nonlinear FPE
inD variables [5]. It will be shown that progress can bemade however, if a separation
of timescales exists.

A related set of questions to those that we ask here have been studied in a model of
language evolution [1–3], in which each island is mapped on to a speaker having two
different linguemes (different ways of saying the same thing) whose concentrations
are modified through interaction events (analogous to migration events). While this
model has similar features to the onewe discuss here, it is distinct, and themethods of
analysis and the final results are also different. We have already mentioned the work
of Nagylaki [19]. Once again our model, analysis and conclusions differ. Finally,
Houchmandzadeh and Vallade have obtained exact results for the probability of
fixation in a variant of the model introduced in the next section [14]. However their
approach, based on calculating the stationary probability generating function [21] for
the system, does not allow for the calculation of quantities related to fixation times
or capture the effect of varying selection strengths, both of which we will address.

If selection is allowed to vary across demes,migration and selection can balance in
order to induce a polymorphic equilibrium. Results relating to the fixation probability
in such systems have only been obtained previously for standard island models [24]
and two deme cases with symmetric migration [12], both of which form a subset
of of the cases addressed here. While work by Whitlock [25] allows asymmetric
migration and multiple demes, the selection strength may only take on two distinct
values in those many demes.

4.3 The Metapopulation Moran Model

The model consists of a series ofD demes, on each of which well-mixed populations
of fixed and finite size exist. The number of individuals that island i contains is given
by βi N , where N is some typical island size, and βi is a scaling factor such that βi N
is an integer. The individuals in the population can carry one of two alleles, A and
B. An independent deme, unconnected to any others and with a sufficiently large
population size, would then be well described by an FPE with transition rates (1.9).
However we are interested in the form of the FPE for the system which comprises
the whole set of D demes, with migration between them.

The process is shown diagrammatically in Fig. 4.2 for the caseD = 2. In Fig. 4.2a,
a reproduction site is chosen with probability f j , which corresponds to a total birth
rate for deme j ; if the demes have an equal birth rate per captia, we simply find
f j = β j (

∑D
i=1 βi )

−1. In Fig. 4.2b either one of the two alleles is chosen to reproduce
based on their relative frequencies in that deme. The individual then reproduces and

http://dx.doi.org/10.1007/978-3-319-21218-0_1


70 4 The Projection Matrix Method

f1 f2

(a) (b)

m11
m21

(c) (d)

Fig. 4.2 Diagram of the neutral metapopulation Moran model for D = 2. Each large black circle
is a deme populated by two types of haploid individuals carrying either an allele A, in red, or allele
B in green. Subfigures a–d depict the stages in picking an allele to reproduce and an allele to
replace/die

its progeny may either displace an individual in their own deme, or an individual in
another deme according to the matrix element mi j (see Fig. 4.2c). The matrix mi j

is then the probability that a individual reproducing in j will have offspring which
displaces an individual in i . Finally, in Fig. 4.2d the type of individual in i that is
displaced is decided, again based on their relative frequencies in i . The vector f j and
the matrix mi j represent probabilities and so satisfy the conditions

∑
j f j = 1 and∑

i mi j = 1 for all j . A more general situation is depicted in Fig. 4.3. The model is
essentially the same as that presented in [5], albeit generalised to allow for different
deme sizes.

We denote the number of A alleles in deme i by ni . The number of B alleles in
deme i is then given by βi N −ni , where βi N is the total population of that deme. The
equivalent transition rates for the process depicted in Fig. 4.2 can then be calculated
using combinatoric arguments. Looking at deme i and summing over the D demes
from which an allele can originate, one obtains

Fig. 4.3 Model extended to
D= 4 islands, each
containing two types of
individual, connected by
links whose strength is given
by a product of the birth
rates, f j , and the migration
probabilities mi j

f j j

mij
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T (ni + 1|ni ) =
D∑

j=1

(
f j

) (
n j

β j N

) (
mi j

) (
βi N − ni

βi N − δi j

)
,

T (ni − 1|ni ) =
D∑

j=1

(
f j

) (
β j N − n j

β j N

) (
mi j

) (
ni

βi N − δi j

)
,

where the dependence of T (n|n′) on the elements of n that do not change in the
transition has been suppressed. Each of the four factors in these expressions for
T (ni ± 1|ni ) corresponds to one of the four processes displayed in Fig. 4.2. The
diagonal elements of mi j do not represent a migration process, but instead the prob-
ability that an offspring remains in its parent’s deme; they are simply equal to one
minus the sum of the other elements in the same column to ensure that

∑
i mi j = 1.

Since f j and mi j always occur together in the combination mi j f j , it is convenient
to introduce the matrix G, a generalised migration rate matrix, which is the product
of the birth rate, f j , and the migration probability, mi j :

Gi j = mi j f j , where
D∑

i, j=1

Gi j = 1; (4.6)

the normalisation of G being inherited from the normalisation of m and f . Again,
the diagonal elements of Gi j represent the probability that both deme j is chosen
and the progeny of the reproduction remains in the parent deme.

The transition rates in terms of Gi j then become

T (ni + 1|ni ) = Gii
(βi N − ni )ni

(βi N − 1)βi N
+ βi N − ni

βi N

D∑
j �=i

Gi j
n j

β j N
, (4.7)

T (ni − 1|ni ) = Gii
(ni )(βi N − ni )

(βi N − 1)βi N
+ ni

βi N

D∑
j �=i

Gi j
β j N − n j

β j N
, (4.8)

where we have separated out the contribution from the processes involving two
islands (i and j) from those which only involve island i .

The master equation associated with this process (Eq. (2.18) with transition rates
(4.7) and (4.8)) is clearly more complicated than that for the well-mixed single-
island population and no more tractable. Again however, we can make the diffusion
approximation discussed in Sect. 2.4. This time we make the change of variables
xi = ni/(βi N ) and again expand in powers of N−1. For further details, one may
consult Appendix C. Truncating at second order we have the FPE (2.30) with

Ai (x) = 1

βi

⎛
⎝−xi

D∑
j �=i

Gi j +
D∑
j �=i

Gi j x j

⎞
⎠ , (4.9)

http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2


72 4 The Projection Matrix Method

and

Bii (x) = 1

β2
i

⎛
⎝xi

D∑
j=1

Gi j +
D∑

j=1

Gi j x j − 2xi

D∑
j=1

Gi j x j

⎞
⎠ . (4.10)

It is sometimes assumed that the off-diagonal elements of the matrix Gi j are
such that Gi j = Gi j/N for all i �= j , where G is of order unity [5, 19]. This
means that the off-diagonal elements in B(x) may be neglected, since they give
O(N−3) contributions. Since only the off-diagonal elements ofG appear in the vector
A(x) and only the diagonal elements of G appear in B(x), both terms on the right-
hand side of Eq. (2.30) are of order N−2, and they effectively balance each other.
Asking that the off-diagonal elements of the matrix G are small has a clear biological
interpretation. The population is strongly subdivided and it is far more likely that an
individual’s offspring will remain in the deme of its parents than migrate. This is not
the generic case however, and the scaling of the off-diagonal terms with the inverse
of the population size is in some cases little more than a mathematical convenience.

Herewewillmake the choice that the elements of themigrationmatrix are approx-
imately all of the sameorder. In doing sowe are assuming that once a deme is selected,
the probability of allele reproduction-migration is not too dissimilar to that of allele
reproduction.

4.3.1 The Metapopulation Moran Model with Selection

Wenowproceed to incorporate selection into themigrationmodel defined inSect. 4.3.
We begin as before with a set of transition rates, however now the probability of an
individual migrating to deme i from deme j is a function of the progenitor’s fitness
in deme j . In a similar fashion to the case presented in Sect. 2.9.1, the fitness of allele
A on each deme is denoted by the vector wA while the fitness of allele B is wB . The
transition rates are

T (ni + 1|ni ) =
D∑

j=1

(βi N − ni )

βi N − δi j
Gi j

[wA] j n j

[wA] j n j + [wB] j (β j N − n j )
,

T (ni − 1|ni ) =
D∑

j=1

ni

βi N − δi j
Gi j

[wB] j (β j N − n j )

[wA] j n j + [wB] j (β j N − n j )
. (4.11)

Letting [wB]i = 1 for every island i , the elements of the fitness term [wA] are now
dependent on both the typical selection strength, s, and a vector α, which moderates
the typical selection strength in magnitude and direction such that

[wA]i = 1 + sαi . (4.12)

http://dx.doi.org/10.1007/978-3-319-21218-0_2
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Positive αi therefore corresponds to allele A being advantageous relative to B on
island i , while negative αi means A is deleterious. We assume that the elements of
α are of order unity.

As in Sect. 2.9.1, the appearance of ni terms in the denominator makes the expan-
sion described in Sect. 2.4 difficult. Once again, we assume that s is small and Taylor
expand to arrive at a more amenable form. One may then proceed in the same spirit
as Sect. 4.3, to arrive at FPE (2.30), valid in the limit of large N and small s. The
calculation is carried out in Appendix C in full. The FPE is defined through an A(x)
vector and a diagonal B(x) matrix which, when expressed as a series in s, have
elements

Ai (x) = 1

βi

⎧⎨
⎩

D∑
j �=i

Gi j (x j − xi ) + s
D∑

j=1

Gi j α j x j (1 − x j ) − s2
D∑
j=1

Gi j α
2
j x2j (1 − x j )

⎫⎬
⎭ + O(s3).

(4.13)

and

Bii (x) = 1

β2
i

⎧⎨
⎩xi

D∑
j=1

Gi j +
D∑

j=1

Gi j x j − 2xi

D∑
j=1

Gi j x j

⎫⎬
⎭ + O(s). (4.14)

While it will be seen in our analysis that it is sufficient to work to these orders in s,
the appropriate truncation is ultimately dependent on the relative sizes of s and N .
The expansions are conducted independently, however as explained in Sect. 2.4 we
wish to omit any terms greater than order N−2. For consistency we need to also omit
any terms involving s which lead to contributions smaller than N−2.

4.4 The Effective Metapopulation Moran Model

Let us begin by considering the neutral case, with drift and diffusion terms given by
Eqs. (4.9) and (4.10). In order to highlight the linearity in Ai (x), we express it as

Ai (x) =
D∑

j=1

Hi j x j , (4.15)

where the matrix H is defined by

Hi j = Gi j

βi
i �= j, Hii = −

D∑
j �=i

Gi j

βi
. (4.16)

As in Chap.3, we find it more instructive to work in the equivalent SDE setting than
that of the FPE. The SDE for the system is
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ẋi =
D∑

j=1

Hi j x j + 1√
N

ηi (τ ), i = 1, . . . ,D, (4.17)

with noise correlations given by Eq. (4.10).
First, as in Chap.3 we examine this equation in the deterministic limit, N → ∞.

The SDE (4.17) then becomes an ODE which is solvable through a linear analysis.
It is clear from the definition of the matrix H in Eq. (4.16) that each row in H sums
exactly to 0 for any choice of parameters. We may therefore write

∑D
j=1 Hi j = 0

for all i , or alternatively as the eigenvalue equation
∑D

j=1 Hi j v
(1)
j = 0, where

v
(1)
j = 1∀ j is a right-eigenvector of H with eigenvalue zero. We shall denote this

eigenvector as v(1) = 1, where 1 is the D-dimensional vector

1 ≡

⎛
⎜⎜⎜⎝
1
1
...

1

⎞
⎟⎟⎟⎠ , so that H1 = 0. (4.18)

In addition, it can be shown that all other eigenvalues, λ(2) . . .λ(D) have a real part
which is negative, under the condition that H is irreducible. In terms of our physical
system, this amounts to specifying that no subgroup of demes is isolated from any
other.

To prove this, one can transform H into a stochastic matrix. Firstly we introduce
a matrix H̃ , such that H̃i j = βminHi j/(D − 1), where βmin is the smallest element
of β. Every off-diagonal element of H̃ then lies in the interval [0, 1], while every
diagonal element lies in the interval [−1, 0). We now form the matrix S with entries
Si j = H̃i j + δi j ; since all entries of this matrix are non-negative, and since each row
sums to one, S is a stochastic matrix [7, 11]. This implies that the largest eigenvalue
of S is 1, and the magnitude of all its other eigenvalues is less than one [7, 11].
Further, by construction, S and H share the same set of eigenvectors. We can use
these properties to show that the largest eigenvalue of H is zero, while all other
eigenvalues have a negative real part.

The right- and left-eigenvectors corresponding to eigenvalue λ(i) will be denoted
by v(i) and u(i) respectively. They are orthogonal to each other, andwill be normalised
so that

D∑
k=1

u(i)
k v

( j)
k = δi j . (4.19)

In the special case that H is symmetric the left- and right-eigenvectors coincide and
the eigenvalues are real.

Already this tells us a great deal about the system dynamics in the deterministic
limit, since the general solution to these equations is given by (2.72). Both ẋi and
Ai (x) = ∑

j Hi j x j have a similar form to Eq. (2.72), which means that after some
time:
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http://dx.doi.org/10.1007/978-3-319-21218-0_2
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(i) The vectors x, ẋ and A(x) are all in the direction 1.
(ii) The vectors ẋ and A(x) are actually zero in this direction, since λ(1) = 0.

In other words, the eigenvalues λ(i) for i ≥ 2 control the initial transient dynamics,
which decay exponentially along the eigenvectors v(i), i ≥ 2, to some point on the
vector v(1)where the systemwill stay indefinitely.We recall that in the terminology of
dynamical systems, v(1) is coincident with a centre manifold [26]. While this system
shares many similarities with the systems discussed in Chap. 3, it is particularly
special since the deterministic component is entirely linear. This means that while
the fast and slow directions identified in Sects. 3.2 and 3.4 are only valid in the region
of the fixed point, the directions identified here are valid far from the line of fixed
points which comprise the centre manifold.

Now, suppose we wish to ignore the initial fast behaviour of the system and pick
out only the long-term dynamics. We begin by noting that one can decompose the
vector A(x) in the right-eigenvectors:

A(x) =
m∑

k=1

v(k)a(k)(x). (4.20)

The condition that A(x) has no components in the fast directions v( j), j = 2, . . . ,D
may then be written in the form

D∑
i=1

u( j)
i Ai (x) = 0, j = 2, . . . ,D. (4.21)

We note that this condition can be shown to be entirely equivalent to Eq. (3.8) with
m = D and r = 1. Since the state of the system, x, lies on the line 1, we have
x1 = x2 = · · · = xD. We will denote the coordinate along 1 as z, so that the centre
manifold in the neutral case is simply

xi = z, i = 1, . . . ,D. (4.22)

However both ẋ and A(x) are zero on the centre manifold, and so the value of z does
not change with time. Although the deterministic dynamics of the neutral model are
trivial, the methodology developed here will be applicable to the case with selection,
which has non-trivial dynamics.

We now ask, what happens when the population is finite and the stochastic dynam-
ics play a role? We would expect that far from the centre manifold, the deterministic
dynamics would dominate over the noise terms, and drag the system to the centre
manifold, along which the stochastic dynamics would dominate. In turn any fluctua-
tion that acted to move the system off the centre manifold, would soon be quashed by
the deterministic term. This is indeedwhat we see, as demonstrated in Fig. 4.4 for two
and five demes respectively. A clear separation of timescales exists; the deterministic
dynamics act quickly to bring the system to the region of the centre manifold, along

http://dx.doi.org/10.1007/978-3-319-21218-0_3
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Fig. 4.4 Left panel Time series of an individual stochastic trajectory (red) and deterministic tra-
jectories (grey) for a neutral model with D = 2. The stochastic trajectory can be seen to quickly
collapse onto the deterministic centre manifold x1 = x2, highlighted in blue, along which stochastic
dynamics are observed. Right panel Time series for the populations in a D= 5 system with equal
deme sizes. The inset graph shows clearly that the trajectories collapse to the centre manifold, after
which they are coupled and move in a stochastic fashion. The system size is N = 300 for each
deme in both plots

which the system moves stochastically. Our intention is now to extend our treatment
of the deterministic system, in which we sought to neglect initial transient dynamics,
to the full stochastic system.

We now make the assumption, as in the introduction to this chapter, that there is
no noise in the fast directions. The only remaining contribution to the noise is then
in the direction 1: η(τ ) = ζ(τ )1. Since, x is restricted to the centre manifold, and
there is no deterministic drift along it, the SDE (4.17) simply reduces to

ż = 1√
N

ζ(τ ). (4.23)

The noise ζ can be characterised by using Eq. (4.19) to write it in terms of η as
ζ(τ ) = ∑

i u(1)
i ηi (τ ). Then we see that ζ is a Gaussian white noise with zero mean

and correlator

〈ζ(τ )ζ(τ ′)〉 =
D∑

i, j=1

u(1)
i Bi j (x)

∣∣
x=z1 u(1)

j δ(τ − τ ′), (4.24)

where Bi j (x) has been evaluated on the centre manifold x = z1. Setting x = z1 in
Eq. (4.10) we find

B̄(z) ≡
D∑

i, j=1

u(1)
i Bi j (x)

∣∣
x=z1 u(1)

j
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= 2z(1 − z)
D∑

i,k=1

[u(1)
i ]2Gikβ

−2
i

≡ 2b1z(1 − z), (4.25)

where we have introduced the constant

b1 =
D∑

i,k=1

[u(1)
i ]2Gikβ

−2
i , (4.26)

and use a bar to indicate the slow component evaluated on the centre manifold.
Extending this notation, Eq. (4.23) may be more generally expressed as

ż = Ā(z) + 1√
N

ζ(τ ), (4.27)

where the drift term evaluated on the centre manifold is zero, Ā(z) = 0, and where
ζ(t) is Gaussian correlated white noise with zero mean and correlation function

〈ζ(τ )ζ(τ ′)〉 = B̄(z)δ(τ − τ ′). (4.28)

Our aim in this section has been to characterise the stochastic dynamics along
the centre manifold, and so to develop a one-dimensional, reduced theory. We have
also observed that given some set of initial conditions, the stochastic system relaxes
to the centre manifold on a much faster timescale than that on which the stochastic
dynamics act. The reduced model is therefore ideally suited to answering questions
related to global fixation, such as the fixation probability and the mean fixation time,
which are long-time properties of the system.

In order to approximate the initial value of the system on the centre manifold, we
assume that the trajectory to the centre manifold is essentially deterministic. Then
the initial condition on the centre manifold, z0, is simply the component of the full
initial condition x0, along v(1) = 1:

z0 =
D∑

i=1

u(1)
i x0i . (4.29)

Together with Eqs. (4.27) and (4.28), this fully defines the reduced model. We note
that being able to determine the initial condition in z is possible here because a centre
manifold is present. Without this centre manifold, the systemwould eventually reach
a fixed point and there would be no clean way to determine the point at which the fast
transient would die out. Further complications would of course arise if the system
was nonlinear.
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4.4.1 The Case with Selection

Having considered the neutral model with migration, in which neither allele A nor
B has any fitness relative to the other, we now consider the case where there is a
relative fitness.

To reiterate, this model is now described by the SDE Eq. (2.67), with drift and
diffusion terms given by Eqs. (4.13) and (4.14) to leading order. We note that deter-
ministically the systemmay now admit a non-trivial fixed point in the region between
0 < xi < 1, i = 1, . . . ,D; the analysis of the consequences of this will be discussed
in Chap.5.

We begin by noting that since s has been defined as a small parameter in relation to
the migration matrix (and hence also the matrix H ), we would still expect the system
to exhibit a separation of timescales. Now however there is no centre manifold;
there is no line along which the deterministic dynamics vanish, as the nonlinear s
terms cause deterministic drift. Instead, a slow subspace exists onto which the system
quickly relaxes, depicted in Fig. 4.5. The existence of such a subspace is clearly seen
in deterministic and stochastic simulations. It is a curved line in the present context,
although because s is small it only has a slight curvature.

Howdowemathematically specify the slow subspace?AlthoughEq. (4.13) shows
that the s �= 0 deterministic theory is inherently nonlinear, since s is typically very
small, we will continue to use the s = 0 left-eigenvectors u( j) to approximate the

0 0.5 1
0

0.5

1

x1

x 2

Fig. 4.5 Deterministic trajectories for s �= 0 plotted in grey. Here a large value of s has been used
(s = 0.1), in order to emphasise the nature of the dynamics. The order s and s2 non-linear terms
in Eq. (4.13) result in trajectories that are curved relative to the neutral case depicted in Fig. 4.4.
The variable z is measured along the straight black dashed line, while the approximation of the
slow subspace is plotted as a curved blue line. The distance between the slow subspace and the line
x = zv(1) is a function of s. The key elements of the approximation are that the system lies on this
slow subspace, can move in the direction v(1) (green arrows), but cannot move along the direction
v(2) (red arrows)

http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_5
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slow subspace through Eq. (4.21). Solving these equations numerically, we find that
they provide a very good approximation to the observed slow subspace. In Appendix
F we solve the (D−1) equations (4.21) to find the slow subspace analytically. To do
this we transform to a co-ordinate system as in Eq. (3.5); in the present context this
is x = z1 + ∑D−1

a=1 wav
(a+1). We find that the equation of the slow subspace takes

the form

wa(z) = casz(1 − z) + O(s2), (4.30)

where the ca are constants which are calculated in the Appendix F. As s → 0,
wa(z) → 0, and the slow subspace becomes the centre manifold, 1, of the neutral
case.

The condition given byEq. (4.21) still restricts A to lie in the 1 direction. Therefore
once again the approximation has beenmade that the deterministic dynamics are only
in this direction. This inconsistency (the system existing on the curved slow subspace,
yet only evolving in the direction 1) is a necessary element of the approximation
scheme which holds to leading order in s. If we ask that the noise is only in this
direction too, then we again write η(τ ) = ζ(τ )1, just as we did in the neutral case, to
find Eqs. (4.27) and (4.28), but now with Ā(z) �= 0. To find Ā(z) we use Eq. (4.19)
to pick out the component of A along 1, and evaluate it in the slow subspace given
by Eq. (4.30):

Ā(z) ≡
D∑

i=1

u(1)
i Ai (z,w(z)). (4.31)

It is important to note that the dynamics are only in the direction 1, even though
the system relaxes to the slow subspace given by Eq. (4.30). Thus the approximation
requires that the wa have no dynamics; they are simply mapped on to a value of z
using Eq. (4.30).

In fact from a mathematical point of view, the whole procedure may be specified
in terms of a linear projection onto the direction 1 from any point in state space,
together with an understanding that the drift should be evaluated on Eq. (4.30). To
do this, a matrix P is constructed, such that when it is applied to any vector wipes
out the fast directions v(a) for a = 2, . . . ,D, but leaves the component along the
direction v(1) = 1, untouched. Using the vector u(1), which is perpendicular to the
fast directions, we can construct the projection matrix as

Pi j = v
(1)
i u(1)

j∑D
k=1 v

(1)
k u(1)

k

. (4.32)

Since v(1) is simply 1,

Pi j = u(1)
j , i = 1, . . . ,D, (4.33)

http://dx.doi.org/10.1007/978-3-319-21218-0_3
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using the orthonormality condition (4.19). We have already implicitly used this to
define Ā and B̄, but it can be directly applied to Eq. (2.67) with drift vector (4.13) and
diffusion matrix (4.14) to obtain Eq. (4.27). The requirement that the drift vanishes
in the fast directions, Eq. (4.21), is still required to find the slow subspace Eq. (4.30).

Let us now apply this approximation procedure. We begin by noting that the drift
vector Eq. (4.13) truncated at second order in s can be alternatively expressed by

Ai (x) = ∑D
j=1 Hi j x j + β−1

i

{
s
∑D

j=1 Gi jα j x j (1 − x j )

−s2
∑D

j=1 Gi jα
2
j x2j (1 − x j )

}
, (4.34)

while the diffusion matrix is left unchanged from the neutral case to leading order
(see Eq. (4.14)). In Appendix F, we obtain the expression Eq. (F.8) for the drift vector
evaluated on the slow subspace (Ai (z,w(z)) in Eq. (4.31)) in terms of the projected
variable z. The elements of A(z) to this order take the form

Ai (z) = − sq(0)
i z(1 − z) + sq(1)

i z(1 − z) − s2q(2)
i z2(1 − z)

− s2q(3)
i z(1 − z)(1 − 2z),

where the vectors of parameters, q(i), i = 0, . . . , 3, are defined in Appendix F. The
diffusion matrix evaluated on the slow subspace is given in Eq. (F.10).

Aswith the reduction of the neutralmodel,we apply the projectionEq. (4.33) to the
SDE Eq. (2.67), with the above drift vector and diffusion matrix. This again leads to
the reduced SDE of type Eq. (4.27), but now with Ā(z) given by Eq. (4.31). The term
−sq(0)

i z(1−z)which appears in Ai (z)does not appear in Ā(z)because
∑

i u(1)
i q(0)

i =
0, which follows from

∑
i u(1)

i Hi j = 0. The remainder of the expression is given by

Ā(z) = sa1z(1 − z) + s2a2z2(1 − z) + s2a3z(1 − z)(1 − 2z), (4.35)

and B̄(z) retains the form obtained in the neutral case, Eq. (4.25). The parameters a1
and a2 are found to be only dependent on the parameters of the problem (m, f , β,
α) and on the left-eigenvector u(1):

a1 =
D∑

i=1

Pki q
(1)
i =

D∑
i, j=1

u(1)
i

Gi jα j

βi
(4.36)

and

a2 = −
D∑

i=1

Pki q
(2)
i = −

D∑
i, j=1

u(1)
i

Gi jα
2
j

βi
. (4.37)

http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
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The parameter a3 meanwhile is found to be dependent on the full set of left- and
right-eigenvectors and their corresponding eigenvalues:

a3 = −
D∑

i=1

Pki q
(3)
i (4.38)

= −
D−1∑
a=1

⎡
⎣ D∑

i, j=1

u(1)
i Gi jα j

βi

D∑
k,l=1

v
(a+1)
j u(a+1)

k

λ(a+1)

Gklαl

βk

⎤
⎦ .

Its more complicated form is a consequence of the curvature of the slow subspace.
In order to complete our description, we must determine the initial condition in

the reduced system. Once again we rely on s being small, and approximate the initial
condition on the slow manifold projected onto v(1) by Eq. (4.29).

For both the neutral and the selective metapopulation Moran model we have
obtained a one dimensional effective description of the global dynamics, Eq. (4.27),
which we expect to be valid in the limit of long times. In the next chapter we will
begin to analyse these equations and compare the results against those fromGillespie
simulations.
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Chapter 5
Analysis of the Reduced Metapopulation
Moran Model

In the last chapter, the projection matrix method was used to simplify the migration
model to a one-dimensional SDE with the form of Eq. (4.27). The drift term Ā(z) is
zero for the case s = 0 and given by Eq. (4.35) to second order in s. The diffusion
term B̄(z) is given by Eq. (4.25) in each case.

Having started froman IBM, thevalidity of the approximation cannowbe testedby
comparing predictions of the model against Gillespie simulations [8] (see Sect. 2.3).
As measures to test the validity of the approximation, the fixation probability and
mean unconditional fixation time are used. Note that the one-dimensional Itō SDE
Eq. (4.27) is equivalent to the one-dimensional FPE

∂ p(z, t)

∂t
= − 1

N

∂

∂z

[
Ā(z)p(z, t)

] + 1

2N 2

∂2

∂z2
[
B̄(z)p(z, t)

]
. (5.1)

The fixation probability of allele A, Q(z0), and time to fixation, T (z0), as a function
of the initial condition projected onto the manifold,

P x0 = z01, (5.2)

can be calculated from the backward Fokker-Planck equation [6], as illustrated in
Sect. 2.5.2. Solutions to these equations will now be described for the reduced dimen-
sionmodel in the cases s = 0 and s �= 0, and the predictions from the reduced systems
compared to simulation.

5.1 Analysis—Neutral Case

In the neutral case, the reduced Fokker-Planck equation takes on the same functional
form as that which is derived for the neutral Moran model on a single island [10]
(Eq. (2.99), with s = 0). Scaling N 2 by b1 and setting z = x1, the results are identical.
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For a general system with known parameters, the calculation of b1 depends only

on obtaining the left-eigenvector of H , u(1); b1 = ∑D
i, j=1

[
u(1)

i

]2
Gi j/β

2
i . For small

values of D, or alternatively, H matrices with some exploitable symmetries, it may
be possible to obtain this analytically. Numerically however, expressions for b1 are
easily obtainable. One could thus proceed in an almost algorithmic way to obtain the
reduced FPE given a migration matrix, m, island sizes, β and the island birth rates
f .
We now note some special cases. Firstly, let us take the case where the matrix

H is symmetric. Then the left- and right-eigenvectors, u(1) and v(1) coincide (up to
an overall constant). Since we take v(1) = 1, u(1)

i = constant for all i . Using the

normalisation condition (4.19) we find that u(1)
i = D−1 ∀i , and so from Eq. (4.26)

b1 =
D∑

i, j=1

Gi j

(βiD)2
. (5.3)

Perhapsmore interesting is the casewhere thematrixG is symmetric.We begin by
looking at the quantity

∑D
i=1 βi Hi j and expressing H in terms of G using Eq. (4.16):

D∑

i=1

βi Hi j =
D∑

i �= j

βi
Gi j

βi
+ β j

⎛

⎝−
D∑

k �= j

G jk

β j

⎞

⎠

=
D∑

i �= j

Gi j −
D∑

k �= j

G jk =
D∑

i �= j

[
Gi j − G ji

] = 0, (5.4)

if G is symmetric. So in this case βi is the left-eigenvector of H with zero eigen-
value, that is, it is equal to u(1)

i , up to an overall constant. Since from Eq. (4.19),
∑D

i=1 u(1)
i = 1, we have that

u(1)
i = βi

∑D
j=1 β j

. (5.5)

This leads to

b1 =
⎛

⎝
D∑

j=1

β j

⎞

⎠

−2

, (5.6)

using Eqs. (4.6) and (4.26). This shows that, for a symmetric G matrix, the reduced
FPE for the metapopulation model is identical to the full FPE for a well-mixedmodel
with the same total number of individuals, N

∑D
i=1 βi .
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Fig. 5.1 Left panel Probability of fixation as a function of the projected initial conditions for neutral
systems, s = 0. Right panel Mean time to fixation as a function of the projected initial conditions,
again for s = 0 neutral systems. Continuous lines show the analytic predictions from Eqs. (5.7) and
(5.8) while the values of symbols are obtained as the mean of 5000 stochastic simulations. Here the
model with three demes is studied, each with N = 200. The various colours/symbols are obtained
from differing migration matrices, given in Appendix D. The system indicted by a blue line (the

central data in the right panel) has a symmetric migration matrix with b1 =
(∑D

j=1 β j

)−2

In the neutral case Eq. (2.59) can be solved as in the single island case (see
Eq. (2.62)) to give

Q(z0) = z0, (5.7)

where we recall that the projected initial condition, z0 is found from Eq. (5.2). The
probability of fixation depends only on the structure and form of themetapopulations
through the determination of the initial conditions.

The mean time to fixation can be calculated from Eq. (2.52), and also resembles
the standard result for one island, Eq. (2.54):

T (z0) = − N 2

b1
[(1 − z0) ln (1 − z0) + z0 ln (z0)] . (5.8)

In order to test the predictions of the reduced model, Eqs. (5.7) and (5.8), we
compare them against stochastic Gillespie simulations of the underlyingmicroscopic
model (specified by the transition rates (4.8)) for a range of systems.Wefind excellent
agreement. In particular, Fig. 5.1 illustrates the results obtained from three different
migration matrices, m, for the case D = 3. As predicted the probability of fixation,
Q(z0) is only dependent on the structure of m though the projected initial condition,
z0. The mean time to fixation meanwhile is highly dependent on the structure of m.
It is clear that the reduced model reflects this dependency very well.

A natural interpretation is that the population behaves as a well-mixed popula-
tion with a new ‘effective population size’. This terminology will be avoided here
however, since the variable z is not directly equivalent to the allele frequency within
the global population and, in addition, since it is frequently used in other situations
in which its meaning differs from that ascribed to it here [5, 12]. The choice is now
made to rewrite Eq. (5.8) in order to compare the results obtained here more easily

http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_4
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with those of Nagylaki [11] (whom we recall considered a Wright-Fisher migration
model with non-overlapping generations):

T (z0) = −(NTotrN )
2 [(1 − z0) ln (1 − z0) + z0 ln (z0)] , (5.9)

where

NTot = N
D∑

k=1

βk and rN =
⎛

⎝
√

b1

D∑

k=1

βk

⎞

⎠

−1

. (5.10)

The parameter rN thus serves as a clearer measure of the effect of population sub-
division relative to an unstructured population of size NTot. Substituting Eq. (5.6)
into the above, we find that the quantity rN is equal to one in the case of symmetric
migration. This agrees with Nagylaki’s results for symmetric migration. The results
diverge from those of Nagylaki outside this limit however. In his model and analysis,
it was found that rN ≤ 1, whereas we find no strict upper bound on the value of
rN . Indeed, in Fig. 5.1 we see that rN may be significantly higher than one in some
particular situations (see green line/squares).

To demonstrate the range of values rN can take, a numerical study can be
conducted. An ensemble of random migration matrices, m, is first generated. We
have to be careful to pick the elements of m such that the normalisation condition∑D

i=1 mi j = 1 holds. Additionally, from a modelling perspective, we would like
to see the diagonal elements of m larger than 1/2 at least, mii > 1/2, so that the
probability of an offspring not migrating is greater than the probability it migrates.
For each random migration matrix generated, an rN may then be calculated to give
an indication of a potential distribution of rN values. Since we expect the reduction
technique to become unreliable if any of the real parts of the non-zero eigenvalues
of H are smaller in magnitude than N−1/2 (this will be discussed in more detail in
Sect. 5.3), we discard any m matrices that yield such values.

Initially we consider systems withD = 4 and βi = 1 for all i . The values for rN

are plotted in a histogram in Fig. 5.2; while no strict upper value for rN exists, the
distribution in this parameter regime does not show rN > 1. We note however, that
this is a feature of the modelling choice; if we remove the restriction mii > 1/2, rN

can take a range of values around one (see, for instance, the plot in green/squares in
Fig. 5.1, which has a migration matrix given by Eq. (D.3). Further, if we allow the
island sizes to vary (as in Fig. 5.2, inset) the distribution of rN values is altered to
allow rN > 1. Testing the theoretical predictions against simulation we once again
find excellent agreement across a range of parameters, as shown in the right panel of
Fig. 5.2.
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Fig. 5.2 Left panel Histograms of values of rN obtained for a D = 4 system with randomly
generated and appropriately normalised migration matrices, m, and s = 0. Main histogram shows
results obtained when all island sizes are the same, βi = 1 for all i . The inset histogram is obtained
when the elements βi are themselves random integers. We have taken N = 250 in both cases, and
discounted any of the random systems that yield a non-zero eigenvalues with a real part greater
than −N−1/2. Right panel Plots of the mean time to fixation as a function of the initial condition
z0. Analytic predictions from the reduced model, Eq. (5.8), are plotted as continuous lines, while
the results from simulation are plotted as symbols. Plots in blue/circles correspond to the smallest
rN value obtained in the histograms (left panel), those in green/squares are obtained from systems
with symmetric G matrices (rN = 1), and those in red/triangles correspond to the largest rN value
obtained in the histograms. Once again, in the main graph all islands are of the same size, while in
the inset plot βi is allowed to vary. The precise parameters for each plot are given in Appendix D

5.2 Analysis—Case with Selection

In the following analysis we shall consider the case in which Ā(z) given by Eq. (4.35)
is truncated at first and second order in s separately. There are two reasons for doing
this. First, the case where only the linear term in s is retained can again be mapped
onto the full FPE for a one-island Moran model with selection (see Eq. (2.99)). Now
not only is N 2 scaled by b1, but s is scaled by a1 and

√
b1. Second, the order at

which we truncate Ā(z) can be viewed as an assumption about the relative size
of the parameters s and N . In the master equation expansion, which was used to
obtain Eq. (2.30), terms smaller than order N−2 were neglected. For consistency we
would also like to neglect any terms smaller than this arising from s contributions.
If s ≈ O(N−1), neglecting O(N−3) terms in Eq. (2.30) results in an expression for
Ā(x) which is first order in s. However, if s ≈ O(N−1/2), neglecting O(N−5/2)

terms results in Ā(x) which is second order in s. Finally, we will present results
for rather small values of N and rather large values of s, as compared with those
commonly found in population genetics.Wewould expect the approximation scheme
to become better as N increases, and as a consequence of the above argument, give
similar results for proportionally smaller values of s.

http://dx.doi.org/10.1007/978-3-319-21218-0_4
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5.2.1 First Order in s

We begin by investigating the case where Ā(z) is truncated at first order in s. Solving
Eq. (2.59), with B̄(z) given by Eq. (4.25), leads to the probability of fixation being
given by

Q(z0) = 1 − exp (−Nsa1z0/b1)

1 − exp (−Nsa1/b1)
. (5.11)

Scaling N by a factor a1/b1 gives the one island result of Eq. (2.100) with z0 = x0.
The form of T (z0) is found by solving Eq. (2.59) with the same choice of Ā(z)

and B̄(z). There are singular points of the differential equation at the boundaries, and
care is required when imposing boundary conditions. These aspects are discussed in
Appendix E, where expressions for T (z0) are found in terms of well-defined integrals
at various order of s. For instance, to first order in s it is found that

T (z0) = c2
[
1 − e−Mσz0

]
− M2e−Mσz0

∫ z0

0
dx eMσx [ln x − ln(1 − x)] , (5.12)

where

c2 = M2e−Mσ

1 − e−Mσ

∫ 1

0
dx eMσx [ln x − ln(1 − x)] . (5.13)

Here M = N/
√

b1 and σ = a1s/
√

b1. The integrals in Eqs. (5.12) and (5.13) may be
expressed as combinations of the exponential integral function [1] and logarithms,
but they may also be easily evaluated numerically.

The agreement between the simulations and the one-dimensional approximation
is excellent for a wide range of parameters, as demonstrated in Fig. 5.3. For systems
inwhich the form of a1 and b1 result in a large selective advantage for one or the other
of the alleles, the time to fixation can be observed to clearly lose the symmetric form
observed in the neutral case. This can be seen in Fig. 5.3 for the results represented
in green/squares and those in blue/circles.

5.2.2 Second Order in s

Once again we seek to solve Eqs. (2.59) and (2.52) with x replaced by z and Ā(z)
and B̄(z) given by Eqs. (4.35) and (4.25), but now taking Ā(z) to second order in s.
We begin by noting that Eq. (4.35) can be written more compactly ass

Ā(z0) = sz0(1 − z0)(k1 − sk2z0), (5.14)

http://dx.doi.org/10.1007/978-3-319-21218-0_2
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Fig. 5.3 Plots for the probability of fixation (left panel) and mean time to fixation (right panel)
as a function of the projected initial conditions for the first order in s case. Continuous lines
are obtained from Eq. (5.11) and by evaluating Eq. (5.12) numerically with Ā(z) to order s and
B̄(z) given by Eq. (4.25). Various symbols indicate the results obtained from simulations. For each
different colour/symbol different α vectors are used; green squares, α = (1, 1,−1), red triangles,
α = (1,−2,−2), and blue circles, α = (−1,−1, 1). All other parameters are kept constant;
s = 0.005, N = 200, β = (3, 2, 1) and the migration matrix m is given by Eq. (D.8). Simulation
results are the average of 5000 runs

with
k1 = a1 + sa3 and k2 = 2a3 − a2 . (5.15)

We can now solve Eq. (2.59) to obtain an expression for the probability of fixation.
We shall merely state the result here; full details of the calculation are given in
Appendix G. Defining the function

l(z0) =
√

N

(2b1|k2|) (sk2z0 − k1), (5.16)

the probability of fixation, given initial weighted frequency of A allele z0, is given
by

Q(z0) = 1 − χ(z0)

1 − χ(1)
; χ(z0) = f (l(z0))

f (l(0))
, (5.17)

where the form of the function f depends on the sign of k2. If k2 < 0 the function
f is the complementary error function [1], if k2 > 0, it is the imaginary error
function [4].

The form of Q(z0) is more complex as compared to the neutral case and the case
to first order in s, for which we found that the metapopulation model behaved analo-
gously to the well-mixed model (see Eqs. (5.7), (2.62), (5.8) and (2.54) respectively).
However, we can gain further insight into the model by considering certain limits.
We examine the situation in which the advantageous allele is the same on each of the
demes. In this case we find that the parameters a1, a2 and b1 are all of order 1, while
we have taken N large. Given that the function l(z) is then relatively large, we can
perform an asymptotic expansion of the error function (see Appendix G, Eqs. (G.10)
and (G.11)) to find that for both k2 < 0 and k2 > 0,

http://dx.doi.org/10.1007/978-3-319-21218-0_4
http://dx.doi.org/10.1007/978-3-319-21218-0_2
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Fig. 5.4 Plots for the probability of fixation, Q(z0), at low values of z0, and the mean time to
fixation, T (z0), in a system where s is of order N−1/2. Continuous blue lines are obtained from
the reduced model (using Eq. (5.17) with k2 > 0 for Q(z0) and solving Eq. (2.52) with Ā(z) given
by Eq. (4.35) and B̄(z) by Eq. (4.25), numerically for T (z0)). Parameters used here are D = 4,
s = 0.05, N = 400, β = (1, 1, 1, 2), α = (1, 0.1, 0.5, 1). The explicit form of the migration
matrix given by Eq. (D.9). Since there are no demes in which selection acts in a contrary direction
to any of the others, the asymptotic expansion for Q(z), Eq. (5.18), can be used. The asymptotic
expression is plotted by a green dashed line; it is indistinguishable from the full order s2 solution
in this regime. For T (z0) we also plot the first order in s solution as a green dashed line; while
qualitatively similar to the full solution, there is some numerical discrepancy

χ(z0) ≈
(
1 − k2

k1
sz0

)−1

exp

(
− k1

b1
s N z0 + k2

2b1
s2N z20

)
.

Having obtained this expression, valid for large l(z0), we can make a further approx-
imation for small s. Taking only linear s terms from the above equation, we obtain

χ(z0) ≈ exp

(
−a1

b1
s N z0

)
, (5.18)

which is the form given in Eq. (2.100), but with a selection strength (or system size)
weighted by the ratio a1/b1. This is the same result obtained in Sect. 5.2.1, however
here we note that it is dependent on the direction of selection being the same in
each deme. We find that this provides an excellent approximation in this regime, as
demonstrated in Fig. 5.4.

If the direction of selection varies from deme to deme however, then from a con-
sideration of the forms of a1 and a3 one can see that there may be some cancellations.
This reduces the size of these parameters and invalidates the use of the asymptotic
expansion; one must therefore resort to evaluating the expressions given in Eq. (5.17)
numerically. We find very good agreement across a wide range of parameters, as
shown in Fig. 5.5.
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Fig. 5.5 Plots for the probability of fixation, Q(z0), and mean time to fixation, T (z0), to second
order in s. Continuous lines are obtained by evaluating Eq. (5.17) and solving Eq. (2.52) numerically.
Parameters used for the results in blue areD= 2, N = 400, s = 1/

√
N , β = (1, 1), α = (1,−1).

Parameters used for the results in red are D = 4, N = 300, s = 1/
√

N , β = (1, 1, 1, 2),
α = (1, 1, 0.3,−1). In both cases the migration matrices are non-symmetric; they are stated
explicitly in Appendix D. Simulation results are the mean of 104 runs

5.3 Estimating the Range of Validity of the Method

Having discussed the approximation method and results, we now turn to considering
the range of validity of the expressions for the reduced system, providing a heuristic
argument along with a numerical analysis.

As stated in Sect. 4.4 the quantities that govern the separation of timescales are
the eigenvalues of H . While the first eigenvalue, λ(1), is always zero, we require
that the remaining eigenvalues are sufficiently less than zero so that the collapse
of the system onto the slow subspace or centre manifold happens on a much faster
timescale than that of fixation. What, then, is a sufficient separation of eigenvalues?
To investigate this we consider a D = 3 system where each deme is of equal size,
whose migration matrix is characterised by a single number 0 < θ < 1:

m =
⎛

⎝
θ (1 − θ)/2 (1 − θ)/2

(1 − θ)/2 θ (1 − θ)/2
(1 − θ)/2 (1 − θ)/2 θ

⎞

⎠ . (5.19)

With these properties, the H matrix for the system can be simply constructed. We
find a degenerate system with only two eigenvalues, the first, zero, and the other two
given by λ(2) = (θ − 1)/2. We can then plot how the predictions of the reduced
system, Eq. (4.27), compare against the results of simulation for some fixed initial
condition as |λ(2)| decreases.

The results in the neutral case are shown in Fig. 5.6.We recall that since thematrix
G is symmetric, b1 is given by Eq. (5.6). One can see that the reduced system agrees
well with the probability of fixation across a remarkably large range of eigenvalues
and for initial conditions far from the centre manifold. While the prediction for the
time to fixation fares slightly less well, results from simulation still agree over a very
large range of parameters, only beginning to diverge at approximately λ2 = −0.05,
at which point one begins to see a rapid increase in fixation time of the simulations.

http://dx.doi.org/10.1007/978-3-319-21218-0_2
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Fig. 5.6 Plots of the probability of fixation and normalised time to fixation as a function of increas-
ing eigenvalue (equivalent to decreasing the strength of collapse onto the centre manifold). The
system is prescribed by the migration matrix given in Eq. (5.19), withD= 3, β = (1, 1, 1), s = 0,
and N = 200, and the initial condition for both plots is z0 = 0.2. Mean values from 104 stochas-
tic simulations are plotted by symbols, whereas continuous lines represent theoretical predictions.
The different symbols are obtained from different initial conditions x0 which lead to the same
projected initial condition z0 = 0.2 via Eq. (4.29). These are x0 = (0.2, 0.2, 0.2) (green squares),
x0 = (0, 0.3, 0.3) (blue circles) and x0 = (0, 0.4, 0.2) (red triangles). The final point on both plots
is λ(2) = −5 × 10−4, and each point is obtained from the mean of 5000 simulations

Fig. 5.7 Plots of the probability of fixation and normalised time to fixation as a function of increas-
ing eigenvalue in a system with s = 0.035. The system is prescribed by the migration matrix
given in Eq. (5.19), with D = 3, β = (1, 1, 1), N = 200 and α = (1,−2, 0.5), and the initial
condition for both plots is z0 = 0.6. Mean values from 6 × 103 stochastic simulations are plotted
as symbols, whereas continuous lines represent theoretical predictions. Each symbol once again
represents a different initial condition in x with the same effective initial condition in z. Here they
are x0 = (0.6, 0.6, 0.6) (green squares), x0 = (0.4, 0.7, 0.7) (blue circles) and x0 = (0, 0.9, 0.9)
(red triangles). The final point on both plots is now λ(2) = −0.025 while once again each point is
obtained from the mean of 5000 simulations

This is also the point at which the magnitude of the noise, moderated by 1/
√

N , is
of the order of the deterministic term (see Eq. (2.67)).

In the case where selection is present, s �= 0, we can conduct a study of the
same system for a fixed set of selection parameters. We recall that here the reduction
techniques relies on the term

∑D
j=1 Hi j x j in Eq. (4.34) inducing a near-deterministic,

linear collapse and restriction of the system to the slow subspace. In this situation,
where s �= 0, this assumption is not only broken by the noise but also the order s
nonlinear terms inEq. (4.34).Wemight threfore expect the reduced system to perform
less well with decreasing λ(2) than the neutral case. While we find this is the case
(see Fig. 5.7), the approximation still works very well up to λ(2) ≈ −0.05. At this
point the reduced system under-predicts the probability of fixation and over-predicts

http://dx.doi.org/10.1007/978-3-319-21218-0_4
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the time to fixation, growing rapidly, much faster than the results from simulation
would suggest. The physical reasoning behind this behaviour will be discussed in
the next section.

5.4 Migration-Selection Balance

So far, a one-dimensional FPE which captures the dynamics of the metapopulation
has been used to calculate the fixation probability and mean unconditional fixation
time in varying selection regimes. Having obtained these general results, it is now
both interesting and instructive to consider a specific system. Of particular note is
the case in which the deterministic system, N → ∞, predicts a migration-selection
balance of the two alleles; both alleles A and B can coexist in a stable polymorphic
equilibrium.Wenote that a system reminiscent of this has been studied in [2], however
there the selection is unchanged across demes and the polymorphic equilibria instead
appear as consquences of the diploid nature of individuals in that model.

Let us begin by considering the deterministic Eq. (2.67) with A(x) given by
Eq. (4.34) and N → ∞. For clarity we restrict our attention to a two island sys-
tem with equal island sizes, D = 2, β = (1, 1), and a symmetric migration matrix

m =
(

θ (1 − θ)
(1 − θ) θ

)
, (5.20)

parametrised by the appropriately normalised probability of offspring not migrating,
0 < θ < 1. While the behaviour of the linear neutral system was straightforward,
the introduction of the non-linear s terms in Eq. (4.35) allows for more complicated
behaviour. One finds that for s �= 0, nine fixed points emerge. Two of these are at
the points of fixation x∗

A = (1, 1) and x∗
B = (0, 0). While a numerical analysis finds

that six of the remaining seven fixed points have values outside the physical range,
a final fixed point, x∗

P E , may arise in between x = (0, 0) and x = (1, 1), under
the condition that the selective pressure works in opposite directions on each of the
demes. Further, one can observe that only one of the fixed points x∗

A, x∗
B , or x∗

P E is
stable for a given set of parameters. This behaviour is not observed in [9], in which
the selection pressure is fixed across demes. An overview of the situation is given in
Fig. 5.8 (left panel); while the region of stable polymorphic equilibrium may appear
large in this highly symmetric regime, we note that in general it only occurs for a
very restricted range of parameters.

Let us now further restrict our attention to a perfectly symmetric set of parameters
by setting α = (1,−1). A phase diagram for this system is shown in Fig. 5.8 (right
panel). A fixed point exists, the stability of which increases with increasing s. It is
interesting to note the position at which this fixed point x∗

P E is found. One might
expect, given the highly symmetric nature of the system, that it would be located
equidistant between the points of fixation of allele A and allele B, x∗

A and x∗
B . While

this is true at first order in s, at second order x∗
P E is shifted closer to x∗

B . This break

http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_4
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Fig. 5.8 Left panel Plot of regions of stability for the fixed points x∗
A (red, upper-right region),

x∗
B (green, lower-left region) and x∗

P E (orange, central region), for a system D = 2, β = (1, 1)
and m given by Eq. (5.20) with θ = 0.95. Right panel Deterministic trajectories (grey) for the same
system with θ = 0.8, α = (1,−1) and s = 0.14. The stable fixed point x∗

P E is indicated by a red
disc, while unstable fixed points, x∗

A and x∗
B , are red circles. The straight line x = zv(1) is plotted

as a black dashed line, while the analytic approximation of the curved slow subspace is plotted as a
blue dashed line. The location of x∗

P E directly on the approximate slow subspace serves to further
emphasise the quality of the approximation

in symmetry in fact has its origins in the construction of the model with selection. In
Sect. 4.3.1, the elements of the fitness weightings wA and wB were chosen to have
the form [wA]i = 1 + sαi , [wB]i = 1. This results in a fitness ratio between the
two alleles which has a nonlinear character; an island with a fitness weightings of
[wA]i = 1 + sαi , [wB]i = 1 does not correspond to an island with [wA]i = 1,
[wB]i = 1− sαi . While a more symmetric choice for the fitness weightings may be
possible, this must be ultimately left for further investigation. Instead we now ask,
how does this deterministic behaviour in such a regime impact the predictions of the
reduced stochastic system, Eq. (4.27)?

To first order in s, the deterministic term Ā(z) in Eq. (4.35), admits no fixed point
other than z = 0 and z = 1. We would expect, however, that the first order in s
description would work well for particularly small values of s, say s ≈ 1/N . Indeed,
this is what we find for small s; the deterministic drive towards the polymorphic
fixed point is sufficiently weak that its existence has little effect on the probability of
fixation ormean time tofixation. The probability of fixation is thenwell approximated
by Eq. (5.11) and the time to fixation by Eq. (5.12), as seen in Fig. 5.9 (green/square
plot).

For larger values of s, the stability of the polymorphic fixed point increases in
the deterministic limit. To capture the effect on Q(z0) and T (z0) one must solve
Eqs. (2.59) and (2.52) to second order in s (using Eq. (4.35) in full). One finds that
the probability of fixation begins to ‘plateau’ across a range of initial conditions as
s increases, with the fixation of allele B becoming increasingly likely. This counter-

http://dx.doi.org/10.1007/978-3-319-21218-0_4
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Fig. 5.9 Plots of the probability of fixation, Q(z0), and mean time to fixation, T (z0), as a function
of the projected initial conditions, for systems featuring symmetric migration balance. Main plots
feature D = 2, β = (1, 1), α = (1,−1) and m given by Eq. (5.20) with θ = 0.8 for increasing
values of s. Continuous lines are obtained from the reduced one-dimensional model, while symbols
are obtained from stochastic simulation with N = 300. Plots in green/squares correspond to s =
1.66×10−3 with Q(z0) and T (z0) obtained from a first order solution to Eqs. (2.59) and (2.52) (see
Eqs. (5.11) and (5.12)). The remaining plots are calculated from second order solutions to Eqs. (2.59)
and (2.52) (see Eq. (5.17)) with s = 5.7 × 10−2 for the blue/circle plots and s = 0.11 for the
red/triangle plots. Inset plots meanwhile, are obtained from parametersD= 5, β = (1, 1, 1, 1, 2),
α = (1, 1, 2.2,−1,−1) and an m matrix taken Eq. (D.12)

intuitive break in symmetry can be viewed as a consequence of the skewed fixed
point, which biases the system towards fixation at x = (0, 0). The reduced model
captures the behaviour extremely well, as observed in Fig. 5.9, left panel. The mean
time to fixation meanwhile begins to increase, diverging as the deterministic fixed
point holds the system in its vicinity for longer and longer. For these very large,
arguably unphysical values of s, the reduced system begins to over-predict the rapidly
increasing time to fixation, as seen in Fig. 5.9. This can also be seen as a consequence
of s becoming larger than |Re[λ(2)]|, as discussed in Sect. 5.3 and shown in Fig. 5.7,
in which the parameters selected allow a deterministic polymorphic equilibrium. In
situations such as these, alternative approximation schemes may prove useful, such
as the Wentzel-Kramers-Brillouin (WKB) expansion of the master equation. When
selection is strong and a stable polymorphic equilibrium exists, such an approach has
been shown to be superior to the diffusion approximation in certain instances [3].
However, the exploration of this technique lies outside the scope of the current
investigation.

The work of Gavrilets and Gibson [7] has already been mentioned and it is worth-
while here relating their approach to our results. They considered a two-deme system
with symmetric migration very similar to that described in this section, though with
slight differences related to the normalisation of fitness in the transition rates. For
systems in which selection acts in the same direction in each deme, our approxima-
tions for the fixation probability are analytically equivalent. However, in situations
where a polymorphic equilibrium is present, the approximation given in [7] is ana-
lytically distinct from that which we derive. Despite this, numerical evaluation of the
two results shows them to be very similar. A calculation of the mean fixation time
was not conducted in [7].
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In this section, a very restricted set of parameters have been considered in order to
illustrate the effect of migration-selection balance. While such stable polymorphic
equilibria clearly exist for a host of other parameters, including multiple islands of
differing sizes and various selection pressures, the parameter range in which they
exist becomes increasingly small relative to the full parameter space asD increases.
In addition, while the deterministic analysis of such systems becomes progressively
more complex, the reduced system continues to provide a good approximation of the
fixation probability and fixation time, as demonstrated in the inset plots of Fig.5.9.
Finally, it should be emphasised that the reduction method has been applied here
to an extreme and very particular set of parameters, essentially testing the method
to breaking point. This is done to demonstrate the quality of the approximation for
large values of s/N .

5.5 Hub

Having discussed the general predictions of the reducedmodel in both the neutral case
and that inwhich selection is present, we nowproceed to apply the results to a specific
metapopulation topology, that of the hub or spoke (see Fig. 5.10). The reasons for
choosing such a system are twofold. Firstly the system possesses symmetries which
make it particularly suitable to an analytic treatment (though it is stressed that the
method can also be used for more general systems). Secondly, such a structure allows
the behaviour of the model to be systematically investigated as the number of demes
increases.

Let us now consider the details of the system. The hub topology is defined as one
featuring a main deme which is connected to D − 1 satellite demes. The satellite
demes themselves are entirely unconnected to one another. Migration probabilities
along the connections are chosen so as to limit the parameter space but still allow
for non-trivial behaviour.

Recall the definition of themigrationmatrixm in Sect. 4.3; it was previously stated
that the columns of m were normalised such that the probability the offspring from
a reproduction event would not migrate was equal to 1 minus the total probability it
would migrate, m j j = 1 − ∑D

i �= j mi j . In this case however, since we have a more
restricted geometry, we can instead parametrise the migration probabilities by the
probability that the offspring remains in the same deme as its parent. Defining ω1
as the probability that an offspring produced in the central deme does not migrate
and ω2 the probability that an offspring from a satellite deme does not migrate, the
normalised migration matrix for D demes is

http://dx.doi.org/10.1007/978-3-319-21218-0_4
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Fig. 5.10 Metapopulation model possessing a hub structure with D = 6. The central deme has
a population of β1N while surrounding demes have a population of β2N . Migration probabilities
(conditional on origin island being first selected) in this case can be parametrised by the probability
of remaining on a particular deme. The probability of remaining on the central deme is ω1, while the
probability of migrating is dispersed equally over the satellite demes. The probability of remaining
on a satellite deme is ω2, with probability 1 − ω2 of migrating to the central deme

m =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜
⎝

ω1 1 − ω2 1 − ω2 . . . 1 − ω2
1−ω1
(D−1) ω2 0 . . . 0
1−ω1
(D−1) 0 ω2 . . . 0

...
...

...
. . .

...

1−ω1
(D−1) 0 0 0 ω2

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟
⎠

. (5.21)

Further, the central deme is taken to have a population of β1N , the satellite demes
to have populations β2N , and the birth rate in each deme be proportional to the island
size, so that f j = β j/

∑D
i=1 βi .

The theory developed in Sect. 4.4 is now applied. We begin by constructing the
matrix H from themigrationmatrixm, and island sizesβ. Before proceeding further,
the eigenvalues of H must be calculated, as it is these which define the parameter
range over which the approximation is expected to work (see Sect. 5.3). For conve-
nience the quantities

γ1 = β2
1(1 − ω1) , (5.22)

γ2 = (D − 1)β2
2(1 − ω2) , (5.23)

γ3 = γ1 + (D − 1)γ2 , (5.24)

γ4 = (D − 1)β1β2 [β1 + (D − 1)β2] , (5.25)

are introduced. The first two eigenvalues are then given by

λ(1) = 0 , λ(2) = −γ3

γ4
, (5.26)

http://dx.doi.org/10.1007/978-3-319-21218-0_4
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and for the remaining eigenvalues one finds

λ( j) = −γ1

γ4
, j ≥ 3. (5.27)

By considering these eigenvalues we are already alerted to parameter regimes in
which the reduced system could potentially give poor agreement with the full system.
For instance, as the number of demes in the system,D, is increased, we findλ(2) tends
to a finite quantity, (ω2 − 1)/β1. However, the remaining non-zero eigenvalues tend
to zero with increasing deme number. One therefore must be cautious when applying
the approximation technique to a hub system with a large number of satellite demes,
as the approximation is expected to break down if the magnitude of these eigenvalues
approaches N−1/2.

To obtain the reduced model in the neutral case, we need only calculate u(1)

(see Eq. (4.25)). In the case where we look at second order effects in s, we must
also calculate the remaining left- and right-eigenvectors. Since the system contains
degenerate eigenvalues (5.27)—this is frequently the case in such highly symmetric
systems—the corresponding eigenvectors will not automatically be orthogonal. An
orthogonal set must be constructed by taking linear combinations of these vectors,
so that the orthonormality condition, Eq. (4.19), holds. The left-eigenvectors can be
expressed as

u(1) = 1

γ3

⎛

⎜
⎜⎜
⎝

γ1
γ2
...

γ2

⎞

⎟
⎟⎟
⎠

, u(2) =

⎛

⎜
⎜⎜
⎝

−(D − 1)
1
...

1

⎞

⎟
⎟⎟
⎠

, (5.28)

and

u( j)
i = δi j − 1

j − 2

j−1∑

l=2

δli , j ≥ 3. (5.29)

The right eigenvectors meanwhile are given by

v(1) =

⎛

⎜⎜
⎜
⎝

1
1
...

1

⎞

⎟⎟
⎟
⎠

, v(2) = 1

(D − 1)γ3

⎛

⎜⎜
⎜
⎝

−(D − 1)γ2
γ1
...

γ1

⎞

⎟⎟
⎟
⎠
, (5.30)

and

v
( j)
i = j − 2

j − 1

⎛

⎝δi j − 1

j − 2

j−1∑

l=2

δli

⎞

⎠ , j ≥ 3. (5.31)
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With these quantities in hand we can calculate the fixation probability and fixation
time as defined in Sects. 5.1 and 5.2.

5.5.1 Hub: s = 0

In order to see how the reduced hub model compares with the full system with
increasing D, we can look at how the fixation probability Q(z0) and the fixation
time T (z0), normalised by the total system population, NTot, changes with the initial
condition z0 kept fixed. For clarity we work in the parameter rN (introduced in
Eq. (5.10)) rather than b1, since rN measures the change in timescale relative to that
of the well-mixed population. The results are plotted in Fig. 5.11, and we see that as
D increases the approximation continues to provide good agreement with the exact
Gillespie simulation of Eq. (2.18), with transition rates given by Eqs. (4.7) and (4.8).

As stated in Sect. 5.1, the probability of fixation is only dependent on network
structure through the projected initial condition, z0. Since z0 is held constant in this
case, the probability of fixation does not change as the network structure is altered.
We note however that the behaviour of the fixation time as a function of the number
of demes is non-trivial. The results in Fig. 5.11 may be compared with the results for
a single island of the same size as the total hub population; increasing the size of the
island would give rN = 1, regardless of size. Here we see rN starts at a significantly
higher value and decreases as the deme number (and hence the total population size)
is increased.

Fig. 5.11 Left panel probability of fixation, Q(z0), with fixed initial condition z0 = 0.2, for the
neutral hub model (s = 0) plotted as a function of the number of demes,D. Right panel parameter
rN as a function of D for the neutral hub model. Discrete analytic results are plotted as a dashed
blue columns, and calculated from Eqs. (5.8) and (5.10), and (4.26) calculated using Eq. (5.28).
Simulation results, plotted as circles, are the mean results from 6000 runs. Parameters used in this
example are ω1 = 0.5, ω2 = 15/16, β1 = 6, β2 = 1, and finally N = 300

http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_4
http://dx.doi.org/10.1007/978-3-319-21218-0_4
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5.5.2 Hub with Selection

Let us now incorporate selection into the general hub model described in Fig. 5.10.
Suppose that the selection strength in the central deme, 1, is moderated by α1 while
the selection strength in the satellite demes is moderated by α2. The Ā(z) term for
the system is given by Eq. (4.35) and B̄(z) by Eq. (4.25). The parameters a1, a2 and
a3 are given by Eqs. (4.36)–(4.38) which can now be easily calculated since we have
the left- and right-eigenvectors of H (Eqs. (5.28)–(5.31) respectively). Their exact
forms are too lengthy to be reproduced here, but are obtained by direct substitution.
The results can then be tested against exact Gillespie simulations of the stochastic
system defined by Eq. (4.11). As an example, let us compare two systems.

In the first system we fix the number of demes to two with the first deme being
defined as the central deme with population β1N and the second as the satellite deme
with population β2N . In deme one, the A alleles experience a selective pressure sα1,
while in the deme two, the satellite deme, the alleles experience a selective pressure
sα2.

In the second system, we again have a central deme with a population of β1N , but
we now fix the total population in each satellite deme to N and vary the total deme
number D. Again the fitness in the central deme is equal to sα1 and the fitness in
each satellite deme is equal to sα2. We can then say that in both systems, the number
of individuals in the selective environments sα1 and sα2 are equal if β2 = (D− 1).

Naïvely then, onemight expect the systems to behave similarly for suchmetrics as
fixation probability and fixation time, as β2 andD− 1 respectively increase in each
system. However, the analytical results predict distinct behaviour. This is supported
by simulation; in Fig. 5.12, a particular set of parameters is fixed and the size of the
populations (moderated by β2 in the first case and discretely by D in the second

Fig. 5.12 Plots of fixation probability, Q(z0) and fixation time, T (z0) for two different models at
z0 = 0.1. The orange lines are obtained from the reduced model of a two-deme system in which
β2, the relative size of the second deme, is increased. The results from simulation of the system are
shown as orange circles. The discrete values indicated by the blue dashed lines are obtained from
a hub model in which the number of (D− 1) satellite demes is increased. Simulation results are
plotted as blue circles. Simulation results are the mean of 2000 runs. Parameters used are s = 0.03,
α1 = 1, α2 = −1, β1 = 3, β2 = 1, ω1 = 0.625, ω2 = 0.9375, and NTot = 300

http://dx.doi.org/10.1007/978-3-319-21218-0_4
http://dx.doi.org/10.1007/978-3-319-21218-0_4
http://dx.doi.org/10.1007/978-3-319-21218-0_4
http://dx.doi.org/10.1007/978-3-319-21218-0_4
http://dx.doi.org/10.1007/978-3-319-21218-0_4
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case) is increased. The probability of A fixating decreases much more rapidly with
an increasing number of satellite demes than the two deme system with increasing
size of the second island. The time to fixation meanwhile increases more rapidly
with the increasing number of satellite demes than that with two islands.
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Chapter 6
Further Developments

In this chapter further developments of the conditioning andprojectionmatrixmethod
are presented. In the following section, the discussion of the metapopulation Moran
model is completed by adding mutation. Following this, a more detailed comparison
of the two reductionmethods is conducted. Finally, in the third section, the projection
matrix method is applied to a new system, the Lotka-Volterra competition model of
two interacting populations.

6.1 Mutation and the Metapopulation Moran Model

In this section, mutation will be added to the metapopulationMoran model described
in Sect. 4.3. The well-mixed Moran model with mutation has already been discussed
inChap.2, alongwith some results relating to its behaviour. It is useful to briefly recap
some of its behaviour here, before proceeding to the metapopulation generalisation.

The transition rates defining the well-mixed model are given in Eq. (2.16). The
parameters ω1 and ω2 are assumed to be small, of the order N−1. In this way terms
involving ω1N−2 and ω1N−2 are neglected in the expansion of the master equation,
and the diffusion matrix B(x) in the model’s FPE does not feature these parameters
(see Eq. (2.39)).

There are no absorbing states in the model, so after some time the system tends
towards a stationary distribution given by Eq. (2.40). Some illustrative plots for the
stationary distribution are given in Fig. 2.1. Note that while these distributions appear
reminiscent of a systemwhich undergoes a bifurcation (the central peak in Fig. 2.40c
becoming two peaks in Fig. 2.40a), the model does not predict such dynamics deter-
ministically. The deterministic component in Eq. (2.28) instead predicts a single fixed
point at

x∗ = ω1

ω1 + ω2
, (6.1)
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regardless of the other parameters. The observed peaks at the boundaries of the
stationary distribution are a purely stochastic effect. The shape of the stationary
distribution is governed by Eq. (2.40), and the different forms it may take can be
broadly categorised in terms of the signs of the parameters c and d, defined in
Eq. (2.41). If c and d are both greater than 0, the distribution will tend to be peaked
in the vicinity of the deterministic fixed point. This is the case if the parameter
combinations Nωi (b−1 − 1) for i = 1, 2, are greater than one (see Eq. (2.41)),
or alternatively, if system size N is large enough that the deterministic dynamics
dominate the system’s behaviour. Conversely, if both c and d are less than 0, the
distribution will tend to be peaked at the boundaries. For this to be the case, the
terms Nωi (b−1 −1) for i = 1, 2, must be less than one. This can occur if the system
size is relatively small, so that the stochastic behaviour dominates the system.

Once again themechanism canmost intuitively understood in the SDE formalism.
Expressing the system in the form of Eq. (2.67), with A(x) and B(x) taken from
Eq. (2.39), one sees that for large N and ω1/ω2, the noise is small relative to the
deterministic term, and the system will tend to fluctuate about the fixed point. When
N and ω1/ω2 are small however, the noise dominates the dynamics. Considering the
functional form of B(x) in Eq. (2.39), one sees that the noise becomes small near the
boundaries. Therefore when the noise dominates, the system quickly moves to the
boundaries; once there the noise is small, and therefore the system remains in this
vicinity for a long time, until an unusually large fluctuation pushes it to the opposing
boundary, and so on.

With this description in hand, the formulation of themetapopulationMoranmodel
withmutation can be conducted. Sincemutation has been included as a separate event
to birth and death in the well-mixed case, the metapopulation model is constructed so
that mutation is independent of migration. In a similar manner to that in which selec-
tion was incorporated in Sect. 4.3.1, the mutation rates will be allowed to vary from
deme to deme. The concept of mutation varying with habitat is perhaps less intuitive
than that of selective pressure changing according to the environment. However, there
have been experimental studies of certain species that suggest that mutation rates can
increase as a result of external environmental stress factors (see, for example [12]).

Let us define the vectors ω1 = (ω11,ω12, . . . ,ω1D) and ω2 = (ω21,ω22, . . . ,

ω2D), where ω1i is the mutation rate from B to A in deme i and similarly ω2i is the
mutation rate from A to B. The transition rates for the model then read

T (ni + 1|ni ) = b
D∑

j=1

[(
f j
) (

n j

β j N

) (
mi j

) (
βi N − ni

βi N − δi j

)]
+ (1 − b)ω1i

βi N − ni

βi N
,

T (ni − 1|ni ) = b
D∑

j=1

[(
f j
) (

β j N − n j

β j N

) (
mi j

) (
ni

βi N − δi j

)]
+ (1 − b)ω2i

ni

βi N
,

(6.2)
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which, alongwith themaster equation (2.18), defines themodel.While potentially the
parameterb could bemade to vary across demes, it has been assumedconstant here for
simplicity.As in Sect. 4.3, the approximately continuous variables xi = ni/(βi N ) are
introduced. The expansion of the master equation can then be conducted in a similar
manner to that outlined in Appendix C. Assuming once again that the mutation rates
are small, and truncating the expansion at second order, the FPE (2.30) is obtained,
with drift terms

Ai (x) = 1

βi

⎛

⎝b
D∑

j �=i

Gi j (x j − xi ) + (1 − b) [−(ω1i + ω2i )xi + ω1i ]

⎞

⎠ (6.3)

and the elements of the diagonal diffusion matrix by

Bii (x) = b

β2
i

D∑

j=1

Gi j
(
xi + x j − 2xi x j

) + O(ω1,ω2). (6.4)

Once again Gi j is related to mi j and f j by Eq. (4.6). As in the neutral case and that
with selection (see Eqs. (4.15) and (4.34)), it is useful to rewrite the drift term in
order to highlight the linearity at leading order:

Ai (x) = b
D∑

j

Hi j x j + (1 − b)

βi
[−(ω1i + ω2i )xi + ω1i ] , (6.5)

where thematrix H is given by Eq. (4.16). An illustrative plot is given in Fig. 6.1. The
system is nonlinear and has as many variables as there are islands. In this respect it is
not entirely dissimilar to themetapopulationMoranmodel with selection. In Sect. 5.3
it was seen that, under the condition that the nonlinear terms in A(x)were of smaller
magnitude that the eigenvalues of H , the linear collapse to a slow subspace dominated
the dynamics. From Fig. 6.1 we can see that a similar situation arises here. We can
therefore follow the methodology developed in Sect. 4.4.1 to attempt to reduce the
D-variable system to an effective single variable description.

Let us begin by considering the form of the slow subspace. We recall that the
fast and slow directions of the neutral analogue, obtained from the left- and right-
eigenvectors of H , u(i) and v(i), are used as approximations for the fast and slow
directions in the non-neutral case. The slow subspace is then approximated by the
nullcline of the fast directions. This is given by the solution to Eq. (4.21) with the
elements Ai (x) taken from Eq. (6.5). For the case with selection, the slow subspace
was calculated to order s (see Appendix F). This was necessary, since an order s2

treatment of the reduced system was required in Sect. 5.4. For the case with mutation
however, we will find it sufficient to work to first order in ω1 and ω2 in the reduced
system. The slow subspace need then only be calculated to zeroth order in ω1 and

http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_4
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http://dx.doi.org/10.1007/978-3-319-21218-0_4
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http://dx.doi.org/10.1007/978-3-319-21218-0_4
http://dx.doi.org/10.1007/978-3-319-21218-0_4
http://dx.doi.org/10.1007/978-3-319-21218-0_5


106 6 Further Developments

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

Fig. 6.1 Trajectories of the two-island metapopulation Moran model with mutation. Deterministic
trajectories are plotted in grey from an ODE of type (2.70) with Ai (x) taken from Eq. (6.5). A single
stochastic trajectory, obtained from Gillespie simulation of the master equation with transition
rates (6.2), is plotted in red. The centre manifold, which is equal to the slow subspace at first
order in ω1 and ω2, is plotted in blue. Parameters used here are ω1 = (8 × 10−3, 7 × 10−4),
ω2 = (8 × 10−3, 3 × 10−4), m11 = m22 = 0.8, m12 = m21 = 0.2, β = (1, 1) and N = 200

ω2, which yields the result from the neutral case, xi = z ∀ i . The drift vector and
diffusion matrix evaluated on the slow subspace are then

Ai (z) = (1 − b)

βi
(−(ω1i + ω2i )z + ω1i ) + O(ω1,ω2), (6.6)

and

Bii (x) = 2z(1 − z)
b

β2
i

D∑

j=1

Gi j , (6.7)

respectively.
The projection matrix for this system is again defined by Eq. (4.33). Applying

this to the above drift and diffusion matrices allows us to pick out the components
of the system’s dynamics in the slow direction. On applying the projection matrix to
Eqs. (6.6) and (6.7), a reduced SDE with the form of Eq. (4.27) is obtained for the
slow dynamics in terms of z. The drift vector reads

Ā(z) = (1 − b) (−(ω̄1 + ω̄2)z + ω̄1), (6.8)

http://dx.doi.org/10.1007/978-3-319-21218-0_2
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where we have introduced the parameters

ω̄1 =
D∑

i=1

u(1)
i

βi
ω1i , ω̄2 =

D∑

i=1

u(1)
i

βi
ω2i . (6.9)

The diffusion matrix retains the form from the reduced neutral model to leading
order, Eq. (4.25).

Since the forms of the drift and diffusion terms for the reduced system are anal-
ogous to the one island case, the equation for the stationary distribution in z can be
calculated in exactly the same way. The form of the probability of fixation retains
the form of Eq. (2.40), but with x replaced by z. The parameters c and d are now
given by

c = N

b1
ω̄1(b

−1 − 1) − 1, d = N

b1
ω̄2(b

−1 − 1) − 1. (6.10)

The effect of structure on the dynamics of the system can now be investigated.
We begin by considering the most simple case, that when all islands are the same

size, βi = 1 ∀ i , and migration is symmetric. Under these conditions, the matrix
G is also symmetric. As discussed in Sect. 5.1, u(1) is given by Eq. (5.5) and b1
by Eq. (5.6). Therefore, one obtains ω̄i = ∑D

j=1 ωi j/D for i = 1, 2. The effective
mutation rates are simply equal to the mean of the mutation rates across demes. The
effect of the term N/b1 in Eq. (6.10) is not so straightforward. Recalling that the
total population is given by NTot = ND in this situation, one finds N/b1 = DNTot.
The reduced system therefore has a greater effective system size than a well mixed-
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Fig. 6.2 Left panel Stationary distribution for a one island model with mutation, with parameters
ω1 = 7 × 10−4, ω2 = 7 × 10−4 and N = 800. The black line is obtained from the theoretical
stationary distribution given by Eq. (2.40) with parameters taken from Eq. (2.41), while the orange
histogram is obtained fromGillespie simulation. Right panel Stationary distribution for the reduced
system in terms of the projected variable z for a system with parameters D = 2, ω1 = (7 ×
10−4, 7 × 10−4), ω2 = (7 × 10−4, 7 × 10−4), m11 = m22 = 0.8, m12 = m21 = 0.2, β = (1, 1)
and N = 400. The black line is obtained from the solution to the stationary distribution of the
reduced system, Eq. (2.40), with parameters c and d given in Eq. (6.10), and the orange histogram
from Gillespie simulations of the full two-dimensional model. Note that while the total populations
and mutation rates in both systems are equal, the effect of migration has fundamentally changed the
character of the stationary distribution. This change is accurately captured by the reduced theory
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system with the same average mutation rates (see Eq. (2.40)). This means that, in
the case where the matrix G is symmetric, the effect of the population structure is
to reduce the effect of the noise on the stationary distribution. An example of such a
case is given in Fig. 6.2.

In general, it is found that the effect of population structure identified above is
seen in most other parameter regimes. That is, the effect of population structure is
in general to reduce the effect of the noise on the stationary distribution, relative to
a well-mixed system with the same total population size and mean mutation rates.
However, there do exist some cases where the converse is true, where the population
structure increases the effect of noise relative to thewell-mixedmodel. In Fig. 6.3, the
stationary distributions for a well-mixed model and a two-island system are plotted
for a situation in which this is the case. We note that numerically it appears that such
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Fig. 6.3 Left panel Stationary distribution for a well-mixed model with mutation, with parameters
ω1 = 3.7 × 10−3, ω2 = 3.7 × 10−3 and N = 1020. As in Fig. 6.2, the black line is obtained
from the one-dimensional theory and the orange histogram from stochastic simulation. Right panel
Stationary distribution for a two-islandMoran model with mutation in terms of z, the distance along
the slow subspace. This system has parameters D = 2, ω1 = ω2 = (5.8 × 10−5, 7.4 × 10−3),
m11 = 0.7, m12 = 0.03 m21 = 0.3 m22 = 0.97, β = (3.6, 1.5) and N = 200. The black line is
obtained from the predictions of the reduced system, while the orange histogram is obtained from
stochastic simulation of the full model. The parameters are such that the total system size and the
average mutation rates are the same in each case, but again the addition of population structure
significantly alters its behaviour
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Fig. 6.4 Left panel The stationary distribution for z for a metapopulation Moran model with
mutation on three islands with asymmetric migration. The black continuous line is obtained from
the reduced theory and the orange histogram from simulations of the full model. Right panel A
similar plot to that in the left panel, but for a system with five islands. Explicit parameters are
omitted here for brevity, but are given in Appendix D
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behaviour is only possible if the elements of ω1 and ω2 are allowed to vary across
demes. More investigation is clearly needed to explore the full range of behaviour
possible in this system. However, as demonstrated in Fig. 6.4, the analytic predictions
derived from the reduced model provide remarkably good agreement with the results
from Gillespie simulation of the full model, across a range of parameters.

6.2 Comparing the Conditioning and the Projection Matrix
Method

InChap.3, the conditioningmethodwas introduced, and itwas shown that themethod
provided a good reduced-dimension description of two particular systems. InChap.4,
another method was introduced, the projection matrix method. This method was
used to reduce the dimension of the metapopulation Moran model, and in Chap.5 it
was seen that the effective system successfully captured features of the full model
across a range of parameters. Both of the methods have been shown to give good
approximations for certainmodels, butwe now ask, ‘are there anymoremathematical
ways we can motivate the implementation of these methods?’, and further ‘how do
they compare?’.

Initially we recall some of the statements made in Sect. 4.1. In both methods we
begin with a set of general SDEs with the form of Eq. (2.67). A deterministic fixed
point x∗ is assumed to exist, about which we linearise. The deterministic analogue of
this linear system is then used to identify any separation of timescales which may be
present in the system. As described in Sect. 3.1, if the real part of all the eigenvalues
of the system’s Jacobian are negative but disparate (that is, they satisfy the inequality
(3.2)), a separation of timescales exists in the region of the fixed point.

To provide an approximation of the deterministic slow and fast directions, the
right-eigenvectors of the system’s Jacobian are used. These form a basis into which
we can transform (see Eq. (3.5)). In the basis of the fast and slow eigenvectors, the
system is described by r slow-variables, denoted z and m − r fast-variables, denoted
w. The SDEs in these variables can be expressed

dzi

dt
= Ai (z,w) + 1√

N
κi (t), i = 1, . . . r,

dw j

dt
= A j (z,w) + 1√

N
κ j (t), j = r + 1, . . . m, (6.11)

where κ(t) is the Gaussian white noise transformed into the new variables, with
correlation structure 〈κi (t)κ j (t ′)〉 = δ(t−t ′)Bi j (z,w). The noise-correlationmatrix
B(z,w) can be partitioned as

B(z,w) =
(
B11(z,w) B12(z,w)

B21(z,w) B22(z,w)

)
. (6.12)
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The partitioned matrix B11 is an r × r matrix and B22 is (m − r) × (m − r). The
exact system has now been separated as much as possible into the fast and slow
components.

Let us consider the system about the fixed point (z∗,w∗) = x∗. If all the eigenval-
ues of the system’s Jacobian are real, then the linearised system is of the same from
as the deterministic Eq. (3.4), but with an extra noise term with the correlation struc-
ture Bi j (z∗,w∗) (see Eq. (2.76)). The Jacobian in this basis is simply the eigenvalue
matrix �. In this form it is clear that in the region of the fixed point, a separation of
timescales exists in the deterministic equations.

The methodology described above was used to arrive at the transformed systems
Eqs. (3.16), (3.47) and (3.60) in Chap. 3. In Chap. 4, when dealing with the metapop-
ulation Moran model, the decision was made to not explicitly give the dynamical
equations for z andw (defined in Appendix F). This was because a projection matrix
was instead used later in the calculation to isolate the dynamics in the relevant direc-
tions. Here we will work in the transformed basis however, so that the two methods
may be more easily compared.

The assumption is now made in both methods, that the fast-variables w relax to
their static value on a much faster timescale than the slow-variables z. To enforce
this deterministically, the variables w are evaluated on their nullcline (see Eq. (3.8)).
The deterministic system has now been reduced to r variables. To complete the
description of the reduced stochastic model requires a decision on how to treat the
noise. It is here that the methods introduced in Chaps. 3 and 4 diverge. For clarity,
we begin by noting that in both the conditioning and projection matrix method, the
reduced r -variable system has the form

d z
dt

= Ā(z) + 1√
N

ζ(t), (6.13)

where

Āi (z) = Ai (z,w(z)), i = 1, . . . r, (6.14)

the vector functionw(z) is thew-nullcline, and the r elements of the Gaussian white-
noise vector ζ(t) have an as-yet-unspecified correlation structure, B̄(z). The structure
of B̄(z) = 〈ζ(t)ζT (t ′)〉 is dependent on which of the two fast-variable elimination
methods is used.

In the conditioning method, the noise covariance matrix B̄(z) is that of Eq. (6.12)
conditioned on κi (t) = 0 ∀ i = r + 1, . . . m. From Eq. (A.28) we see that this is
given by

B̄c(z) = B11(z,w(z)) − B12(z,w(z))B−1
22 (z,w(z))BT

12(z,w(z)), (6.15)

where we have used the subscript c to distinguish the conditioned result.
In the projection matrix method, a projection matrix (defined in terms of the

left- and right-eigenvectors of the systems Jacobian, u(i) and v(i)) is applied to the

http://dx.doi.org/10.1007/978-3-319-21218-0_3
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http://dx.doi.org/10.1007/978-3-319-21218-0_3
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noise, which isolates the component of the noise in the slow-directions. It is this
isolated component which forms the correlation matrix for ζ(t). Constructing the
m ×r matricesUr and Vr , whose i th columns are defined to be the i th left- and right-
eigenvectors, u(i) and v(i) for i = 1, . . . r , the equation for the projectionmatrix is [6]

P = Vr

(
U T

r Vr

)−1
U T

r . (6.16)

This is a generalisation of Eq. (4.33), for which the number of slow variables was
one, r = 1. In the particular case of the system (6.11), the projection matrix takes a
very simple from as a result of the fact that the system is already in the fast/slow basis.
The left- and right-eigenvectors are equal (� is symmetric) and one finds a general P

P =
(

Ir 0r,m−r

0m−r,r 0m−r,m−r

)
, (6.17)

where Ir is the r × r identity matrix and the 0k,l are k × l zero-matrices. Applying
this projection to the noise κ(t), one finds that the form of the correlations in ζ(t) is

[
B̄p(z)

]
i j =

[
P B(z,w)PT

]

i j
i, j = 1, . . . , r

B̄p(z) = B11(z,w(z)), (6.18)

where the subscript p now refers to the result of the projection matrix method.
As stated in Sect. 4.1, any noise corresponding to the fast-directions is effectively
ignored. Once again it is noted that, perhaps by chance, the projection matrix method
predicts a noise covariance matrix in the reduced system, B̄p(z), which is the same
as the covariance matrix of the marginal distribution of the noise in the full system
(see Appendix A, Eq. (A.24)).

6.2.1 Applying the Methods to a Linear System
with Additive Noise

It is at this point unclear which method in general gives a better approximation to the
full system, (though we recall from Sects. 3.5 and 4.1 that if the noise matrix B(z,w)

is singular, the conditioning method gives a qualitatively worse description of the
dynamics than the projection matrix). To make progress we begin by restricting our
attention to a system with a linear drift term and a constant diffusion term, so that the
associated FPE of the system is linear (see Sect. 2.4). Such a system could also be
arrived at if one linearised Eq. (6.11). Further, let us assume that all the eigenvalues
of the system are real and negative. The variables in the slow/fast basis are denoted
ξz and ξw, to highlight the linearity of the dynamics. In this basis, the system has
the same form as Eq. (3.4) but with an additive noise term;

http://dx.doi.org/10.1007/978-3-319-21218-0_4
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http://dx.doi.org/10.1007/978-3-319-21218-0_3


112 6 Further Developments

d

dt

(
ξz
ξw

)
= �

(
ξz
ξw

)
+ κ(t), (6.19)

where the correlation structure of κ is given by Eq. (2.69) and the noise covariance
matrix can be partitioned as Eq. (6.12), but is independent of the state of the system.
Thematrix� is once again a diagonal matrix of eigenvalues λ(i). If we finally assume
that the boundaries to the problem lie at ±∞, the PDF described by the associated
FPE is Gaussian [2] (since the FPE is linear) and can thus be described in terms of
the time-evolution of its mean and covariance (see Sect. 2.7).

The equations for the mean and covariance are soluble; the solutions for the mean
quantities, 〈ξz〉 and 〈ξw〉, have the same form as Eq. (2.72), while the solution for
the covariance matrix �1 is given by Eq. (2.80). Since in this particular example the
Jacobian is given by the diagonal matrix �, the solution for the components of �

can be expressed in the particularly neat form

�i j =
(

e(λ(i)+λ( j))t − 1

λ(i) + λ( j)

)

Bi j , i, j = 1, . . . m. (6.20)

In the approximation procedures, a reduced form of the SDEs is obtained
under the assumption that the inequalities (3.2) hold, that is |λ(m)|, . . . , |λ(r+1)| 

|λ(r+1)|, . . . , |λ(1)|. How does such an assumption impact on the form of Eq. (6.20)?
To investigate this, a rather extreme limit can be taken. By taking the limit λ( j) →
−∞ ∀ j = r + 1, . . . m, the inequalities (3.2) are enforced to the greatest possible
degree. The elements of the distribution (6.20) then take the limiting form

�i j →
(

e(λ(i)+λ( j))t − 1

λ(i) + λ( j)

)

Bi j , i, j = 1, . . . , r (6.21)

�kl → 0, k, l = r + 1, . . . , m

�il = �li → 0, i = 1, . . . , r l = r + 1, . . . , m.

How does Eq. (6.21) compare with the predictions of the reduced systems? The
reduced linear systems are obtained in the same manner as Eq. (6.13). Introducing
the partitioned (r × r) Jacobian

�̄i j = �i j , ∀ i, j = 1, . . . r, (6.22)

which takes the place of Ā(z) in Eq. (6.13), the reduced system is

d

dt
ξz = �̄ξz + ζ(t), (6.23)

1The matrix � is the covariance matrix for the Gaussian PDF p(ξz, ξw, t) described by the linear
FPE. It is not to be confused with the diffusion matrix B(x) which describes the covariance of the
noise terms, κi (t), in the SDE.
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where 〈ζ(t)ζT (t ′)〉 = B̄δ(t − t ′) and the structure of B̄ is dependent on the fast-
variable elimination method used.

The solution for the time-evolution of the mean of ξz is clearly unaltered in both
methods, since the system is linear and �̄ is diagonal and partitioned from�. In both
the conditioning method and the projection matrix method therefore, the evolution
of 〈ξz〉 is given precisely by the reduced system, while 〈ξw〉 is assumed to relax
instantaneously to its stationary value, 0.

What form does the the covariance matrix in the reduced system take? Denoting
the covariance matrix of the reduced system’s PDF �̄, from Eq. (2.80) we find

�̄i j =
(

e(λ(i)+λ( j))t − 1

λ(i) + λ( j)

)

B̄i j , i, j = 1, . . . r. (6.24)

Employing the conditioning method, B̄ is taken to be B̄c in Eq. (6.15). Substituting
this into the equation for �̄, on obtains

�̄i j =
(

e(λ(i)+λ( j))t − 1

λ(i) + λ( j)

)

B̄c i j (6.25)

=
(

e(λ(i)+λ( j))t − 1

λ(i) + λ( j)

)[
B11 − B12B

−1
22 B

T
12

]

i j
, i, j = 1, . . . r. (6.26)

The projection matrix method meanwhile gives B̄ = B̄p, which indicates a �̄ of the
form

�̄i j =
(

e(λ(i)+λ( j))t − 1

λ(i) + λ( j)

)

B̄p i j (6.27)

=
(

e(λ(i)+λ( j))t − 1

λ(i) + λ( j)

)

[B11]i j (6.28)

=
(

e(λ(i)+λ( j))t − 1

λ(i) + λ( j)

)

Bi j , i, j = 1, . . . r. (6.29)

Comparing these two results to Eq. (6.21), we see that for a system with a linear
FPE, the reduced system obtained via the projection matrix method provides a better
approximation to the full variable system than conditioning. We would however
expect the two methods to give similar results if the correlation between the fast and
slow noise variables, B12 = BT

21, was small. This will be explored in the following
section in which we consider the relation to the two methods when applied to the
neutral two-deme metapopulation Moran model. While this system is again linear in
the drift term, it is distinct from the above example in that it has multiplicative noise,
and therefore its associated FPE is non-linear.

http://dx.doi.org/10.1007/978-3-319-21218-0_2
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6.2.2 Application to Neutral Two-Deme Metapopulation
Moran Model

The neutral two-dememetapopulationMoranmodel is described by the SDEs (2.67),
with a drift vector given by Eq. (4.9) and diffusion matrix by Eq. (4.10) withD = 2.
In order to align the discussion more closely with that presented in Sect. 6.2.1, we
will begin by transforming the system into a new set of fast and slow variables w

and z, defined as in Eq. (3.5) with x replaced by x1 and y by x2. The transformation
matrix can be explicitly calculated to be

V =
(
1 −β2G12

β1G21

1 1

)

. (6.30)

The SDEs in z and w then take the form

dz

dt
= 0 + 1√

N
κz(t),

dw

dt
= − (β2G12 + β1G21)

β1β2
w + 1√

N
κw(t), (6.31)

whereκ(t) has the transformed correlation structure specified byEq. (3.27), the exact
form of which is too lengthy to be worthwhile reproducing here, though we note that
it is now non-diagonal. Applying both reduction methods we obtain an SDE of the
form of Eq. (6.13) in terms of the single z variable, with Ā(z) = 0. As usual the
correlation structure for ζ(t) is different for the conditioning and projection matrix
methods, though we note that in this case the functional form is the same;

B̄c = 2bcz(1 − z), B̄p = 2bpz(1 − z), (6.32)

where

bc = (G11 + G12)(G21 + G22)

β2
2(G11 + G12) + β2

1(G21 + G22)
(6.33)

and

bp = G2
12(G21 + G22) + G2

21(G11 + G12)

(β2G12 + β1G21)2
. (6.34)

Unlike the system examined in Sect. 6.2.1, the full PDF cannot easily be found for
the full or reduced systems. Instead, the probability of fixation and unconditional time
to fixation predicted from the reduced systems are compared. The predicted proba-
bility of fixation is independent of bc and bp in the respective cases (see Eqs. (2.59)
and (5.7)). The conditionedmodel therefore provides an equally good approximation

http://dx.doi.org/10.1007/978-3-319-21218-0_2
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Fig. 6.5 Left panel Distribution of noise terms η1, η2 with covariance given by B(x). Central
panel Distribution of noise terms κ1, κ2 with covariance given by the transformed diffusion matrix
[V −1]B(x)[V −1]T . Right panel Distribution of the single noise term ζ for the reduced model. The
red, dashed line is obtained from the conditioning method and hence the distribution has a variance
equal to that of κz conditioned on κw = 0. The blue line is obtained from the projection matrix
method, and so the distribution has the same variance of the marginal of κz . In all plots the diffusion
matrix is evaluated at (x1, x2) = (0.5, 0.5). The parameters used for this plot are β = (1, 1),
and the unphysical but illustrative migration rates m11 = 0.975, m12 = 0.994, m21 = 0.025 and
m22 = 0.006

for the probability of fixation. The time to fixation however is dependent on which
form of B̄ is taken (see Eq. (5.8)).

In Chap.5, is has already been seen that using the parameter bp obtained from
the projection matrix method gives very good predictions for the time to fixation.
What happens if instead the parameter bc, obtained from the conditioning method,
is used? Over many parameter regimes it is found that the conditioned system is
comparable to the reduced system obtained from projection, as depicted in Fig. 6.5;
in the leftmost panel the original noise distribution is plotted. The transformed noise
distribution for κz and κw is plotted in the central panel. Since these noise terms have
a small covariance, the conditional and marginal distributions are nearly identical, as
seen in the rightmost panel. In Fig. 6.6, the same quantities are plotted for a system
with amore symmetricmigrationmatrix. The covariance of κz andκw is now slightly
larger, and the two method begin to visibly differ in their predictions. This behaviour
is magnified drastically in Fig. 6.7. In these figures, unphysical parameters have in
some cases been chosen to illustrate the behaviour in each regime.

It is interesting to note that Figs. 6.5, 6.6 and 6.7 are ordered according to the
size which they predict bc/bp to be. In Fig. 6.5, bp < (

∑
i βi )

−2 and therefore the
time to fixation is relatively large. In Fig. 6.6, bp ≈ (

∑
i βi )

−2 and therefore the
time to fixation is roughly the same as for the well-mixed population. In Fig. 6.7,
bp > (

∑
i βi )

−2 and therefore the time to fixation is relatively small. In this latter
case, the result from the conditioning method considerably over-predicts the time to
fixation (as opposed to the projection method which matches simulations extremely
well).

How do we explain this behaviour? The problem essentially lies in the size of the
noise in the reduced system. The diagonal terms in the diffusion matrix (6.12) are
strictly positive and while the off-diagonal elements may be negative, the diffusion
matrix is symmetric. Looking at Eqs. (6.15) and (6.18), we see that this leads to the
following inequality, which holds for any system;

http://dx.doi.org/10.1007/978-3-319-21218-0_5
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Fig. 6.6 The plots in this figure are the same as those in Fig. 6.5, but evaluated with the migration
matrix m11 = 0.95, m12 = 0.09, m21 = 0.05 and m22 = 0.91. We note that while in Fig. 6.5 the
distributions for ζ are virtually coincident, here some disparity can be observed

Fig. 6.7 Once again the plots in this figure are the same as those in Fig. 6.5, now evaluated with
the migration matrix m11 = 0.9999, m12 = 0.07, m21 = 1 × 10−4, and m22 = 0.93. The
large covariance of κz and κw leads to a larger discrepancy between the conditional and marginal
distributions, and hence between the distributions for ζ from the conditioning (red, dashed) and
projection matrix methods (blue)

B̄p ≥ B̄c. (6.35)

The degree to which B̄p is greater than B̄c depends on the specific system considered.
This is indeed what we see in the case of the Moran model (6.31), most obviously in
Fig. 6.7. In this case the reduced system obtained from conditioning under-predicts
the magnitude of the noise because it discounts the probability of stochastic events
along κz = κw by forcing κw = 0. This leads to an over-estimation of the time to
fixation relative to results obtained from simulation.

6.3 Reducing the Lotka-Volterra Model

In this thesis, the most prominent model considered has been the Moran model, with
a special focus on one its variants, the metapopulation Moran model. It is a model
which has been used extensively [15], especially in the last decade, where it has
featured prominently in the study of stochastic game theory [9, 14]. In almost all of
this work, the assumption that the system size N is fixed is hardly ever questioned.
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While some authors attempt to address this issue with recourse to an effective pop-
ulation size, replacing variations in population, for instance, by an average [1, 3],
such approaches are not satisfying. Excepting these attempts at justifying its formu-
lation, the vast majority of authors simply accept this foundation as a necessary step
towards attaining tractability. However, this results in a single rate parameter for the
model, making the resulting effects of birth and death impossible to tease apart from
each other, as well as other processes. As discussed in Sect. 2.9.1, the ambiguities
inherent in this approach are particularly apparent when trying to include the effects
of selection in the model.

Since the criticism of over-abstraction can be equally levelled against some of the
work in this thesis, a different starting point will be described, which allows some of
these questions to be addressed. A more ecologically-orientated approach is adopted
by beginning from a population of n1 haploid individuals which carry allele A and
n2 haploid individuals which carry allele B. They will reproduce at rates b1 and b2
respectively and die at rates d1 and d2. The types A and B then compete against
individuals of their own type at rates c11 and c22 respectively. In the nomenclature of
ecology, this is termed intraspecies competition (meaning competition within each
species), though in a population genetics context, the types A and B are simply types
of a single species. At rate c12, the two types will compete to the detriment of type
A, while at rate c21, the number of B will decrease as a result of competition with
type A. The effect of competition will be to regulate the population size, without
imposing the condition n1 + n2 = N .

Although it is quite easy to sketch out this idea, showing how precisely this model
relates to the Moran model, is not so straightforward, and there appear to be only
a few instances in which this has been attempted. Each of these arguably features
some drawbacks, for instance being too focused on deterministic level [7] or not
providing a precise correspondence with Moran type models [10]. However it will
be shown that a more systematic understanding of the relationship between the two
approaches can be obtained via timescale separation arguments, more specifically,
by application of the projection matrix method, first introduced in Chap. 4.

Let us begin by considering a well-mixed system, with a state entirely specified
by the number of A and B alleles, denoted n = (n1, n2) respectively. This state will
be able to change because of births, deaths or competition between individuals. In the
notation of chemical reactions (see Sect. 2.4) the model is defined by the following
rules:

A
b1−→ A + A, B

b2−→ B + B,

A
d1−→ ∅, B

d2−→ ∅,

A + A
c11−→ A, B + B

c22−→ B, (6.36)

A + B
c12−→ B, A + B

c21−→ A.

http://dx.doi.org/10.1007/978-3-319-21218-0_2
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To define the dynamics we need to specify the rates at which the allowed changes
(6.36) take place. Assuming a law of mass action for the competitive interactions
(see Eq. (2.35)) the transition rates are given by

T1(n1 + 1, n2|n1, n2) = b1
n1

V
,

T2(n1, n2 + 1|n1, n2) = b2
n2

V
, (6.37)

T3(n1 − 1, n2|n1, n2) = d1
n1

V
+ c11

n1

V

n1

V
+ c12

n2

V

n1

V
,

T4(n1, n2 − 1|n1, n2) = d2
n2

V
+ c22

n2

V

n2

V
+ c21

n1

V

n2

V
.

The parameter V is not the total number of individuals in the system, which is free
to vary. Rather it is a measure of the size of the system. For instance, in a terrestrial
ecology it would be the area of land which the individuals inhabit. So typically it
would be an area or a volume, but its precise value or even its dimensions can be left
unspecified, as they can be absorbed into the rates bi , di and ci j . Together with the
master equation (2.18), the transition rates (6.37) fully define the model.

Introducing the variables, xi ≡ ni/V , the diffusion approximation is made under
the assumption that V is large and xi approximately continuous. An expansion of
the master equation can then be conducted as described in Sect. 2.4. This results in
an FPE (2.30) with N replaced by V , and drift and diffusion terms which can be
calculated using Eqs. (2.31), (2.32) and (6.36). The elements of these terms read

Ai (x) = (bi − di ) xi − cii x2i − ci j xi x j , (6.38)

and

Bii (x) = (bi + di ) xi + cii x2i + ci j xi x j , (6.39)

where i = 1, 2 and j �= i . The off-diagonal entries of the matrix B are equal to
zero. In the limit V → ∞, Eq. (2.67) reduces to the two deterministic differential
equations dxi/dτ = Ai (x), with Ai (x) given by Eq. (6.38) and τ = t/V . These are
the Lotka-Volterra equations for two competing species [11, 13].

6.3.1 The Neutral Case

To begin the analysis, the individuals of type A and B are assumed to have equal
fitness. Thus the theory is neutral, and A and B have equal birth, death and compe-
tition rates: bi ≡ b0, di ≡ d0, ci j ≡ c0. A simulation of the original IBM defined
by Eqs. (6.36) and (6.37) is shown in Fig. 6.8, where it is seen that the trajectories
quickly collapse onto a line in the x1-x2 plane. A separation of timescales thus exists,
which we wish to exploit.

http://dx.doi.org/10.1007/978-3-319-21218-0_2
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In order to apply the projection matrix method, we begin as described in Chap. 4,
by looking for fixed points of the dynamics. Taking the combinations A1 ± A2 we
find that the fixed points are solutions of the two equations

[(b0 − d0) − c0 (x1 + x2)] (x1 ± x2) = 0. (6.40)

We see that, apart from the trivial fixed point x1 = x2 = 0, there is a line of fixed
points given by

x1 + x2 = (b0 − d0)

c0
. (6.41)

The neutral Lotka-Volterra model thus features a centre manifold, plotted as a
blue line shown in Fig. 6.8. Further insight can be gained by calculating the Jaco-
bian at points on Eq. (6.41). One finds that it has eigenvalues λ(1) = 0 and
λ(2) = −(b0 − d0). The time scale for the collapse onto the centre manifold is
thus given by |λ(2)|−1 = (b0 − d0)−1. The situation is entirely reminiscent of that
identified for the metapopulation Moran model in Chap.4. The stochastic dynam-
ics (shown in red in Fig. 6.8) are dominated by the deterministic dynamics far from
the centre manifold, and there is a rapid collapse to its vicinity. Fluctuations tak-
ing the system too far away from the centre manifold are similarly countered by
the deterministic dynamics dragging the system back. The net result is a drift along
the centre manifold until either of the axes are reached and fixation of one of the
types is achieved. This effect has also been noted and exploited in [4, 5] under the
investigation of the evolution of dispersion.

Having identified this separation in timescales, we can now apply the projection
matrix method to the system. Before proceeding however, it is useful to rescale both
time and the variables in order to eliminate various constants:

Fig. 6.8 A stochastic
simulation of the model
specified by Eqs. (6.36) is
plotted in red, along with the
mean deterministic
behaviour (given by Ai (x) in
Eqs. (6.38)) in grey.
Parameters used here are for
the neutral model, with
b0 = 2, d0 = 1, c0 = 0.6 and
V = 300. The stochastic
system follows an
approximately deterministic
trajectory until it reaches the
centre manifold, plotted in
blue and given by Eq. (6.41)

http://dx.doi.org/10.1007/978-3-319-21218-0_4
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y1 = c0
(b0 − d0)

x1, y2 = c0
(b0 − d0)

x2, τ̃ = (b0 − d0)τ . (6.42)

The elements of the drift vector in the new variables are

Ã1( y) = y1(1 − y1 − y2), Ã2( y) = y2(1 − y1 − y2), (6.43)

with the centre manifold now clearly given by y2 = 1 − y1. The components of the
diagonal noise covariance matrix are now

B̃11( y) = c0
b0 − d0

(
(b0 + d0)

b0 − d0
y1 + y1(y1 + y2)

)
, (6.44)

B̃22( y) = c0
b0 − d0

(
(b0 + d0)

b0 − d0
y2 + y2(y1 + y2)

)
. (6.45)

The rescaled eigenvalues are λ̃(1) = 0 and λ̃(2) = −1. The corresponding eigenvec-
tors are given by

v(1) =
(

1
−1

)
u(1) =

(
1 − y1
−y1

)
, (6.46)

and

v(2) =
(

y1
1 − y1

)
u(2) =

(
1
1

)
. (6.47)

normalised such that Eq. (4.19) holds.
The situation is slightly more complicated than that which was found for the

neutral metapopulation Moran model. In Sect. 4.4, since the deterministic terms of
the model’s SDEs were linear, the eigenvectors were simply some combination of
constants. In this system, the deterministic term is non-linear, even in the neutral case.
The result of this is that, though a centre manifold exists, the fast and slow directions
in its vicinity change depending on the position of the system along the line. This
can be seen in Fig. 6.8, in which the direction of the dominant fluctuations of the
stochastic trajectory change depending on the system’s relative position along the
centremanifold. Despite this difference in the form of the fast and slow directions, the
projection matrix can still be constructed and applied to the system. Note however,
that a change of variables of the type defined for the metapopulation Moran model
(see Eq. (F.2) is now no longer straightforward, since v(1) is not a constant. The
choice is therefore made to denote the coordinate along the centre manifold as z, and
choose this to be equal to y1, although of course many other choices are possible.

As in Chap.4, a projection matrix, defined by Eqs. (4.33) and (6.46) and (6.46),
is applied to the SDEs for the model. This removes the components of the dynamics
in the fast directions, while keeping the slow mode intact. Applying the projection
operator to the first term on the right-hand side of Eq. (6.43) gives P Ã = 0. Applying

http://dx.doi.org/10.1007/978-3-319-21218-0_4
http://dx.doi.org/10.1007/978-3-319-21218-0_4
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the projection matrix to the noise in the SDE, one sees that the noise in the reduced
system must have correlations

〈
ζ(τ̃ )ζ(τ̃ ′)

〉 =
[

P2
11 B̃11(x, y) + P2

12 B̃22(x, y)
]
δ
(
τ̃ − τ̃ ′). (6.48)

The reduced system then takes the form

dz

d τ̃
= Ā(z) + 1√

V
ζ(τ̃ ), (6.49)

where Ā(z) = 0 and where ζ(τ̃ ) is a Gaussian noise with zero mean and correlator

〈
ζ(τ̃ )ζ(τ̃ ′)

〉 = B̄(z)δ
(
τ̃ − τ̃ ′) ; B̄(z) = 2

b0c0
(b0 − d0)2

z(1 − z). (6.50)

Let a new parameter N be defined such that

N = (b0 − d0)

c0
V . (6.51)

From Eq. (6.41), this can be interpreted as the discrete size of the population on the
centre manifold. Substituting this into Eq. (6.50), we find that the reduced model is
exactly the Moran model in rescaled time t̄ = V b0τ̃/c0, where z is the fraction of
type A alleles and N is the total population size. The neutral form of the Lotka-
Volterra model therefore reduces to precisely the Moran model, under the projection
matrix method.

As in the case of the neutral metapopulation Moran model, the probability of
fixation and mean unconditional time to fixation can be calculated as a function of
the initial condition. The results are given by the familiar expressions Eqs. (2.62)
and (2.54) with x0 replaced by z0 and time now measured in t̄ = [b0(b0 − d0)/c0] t .
The reduced theory matches the results of Gillespie simulations extremely well.
Illustrative cases are given by the green plots in Figs. 6.10 and 6.11.

6.3.2 The Non-neutral Case

It is now natural to ask what model is obtained by the elimination of the fast modes
of the non-neutral Lotka-Volterra model. As is usual in population genetics we will
work to linear order in the selection strength, s, and so begin by writing

bi = b0 (1 + εβi ) , di = d0 (1 + εδi ) , ci j = c0
(
1 + εγi j

)
, (6.52)

http://dx.doi.org/10.1007/978-3-319-21218-0_2
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where ε is a small parameter which will later be related to s. The constants βi , δi

and γi j are assumed to be of order one. In terms of the rescaled variables y1 and y2
defined in Eq. (6.42), the drift vector is given by

A1( y) = y1(1 − y1 − y2) + εy1

[
(b0β1 − d0δ1)

b0 − d0
− γ11y1 − γ12y2

]
,

A2( y) = y2(1 − y1 − y2) + εy2

[
(b0β2 − d0δ2)

b0 − d0
− γ21y1 + γ22y2

]
. (6.53)

The diagonal components of the diffusion matrix are meanwhile unchanged from
the neutral case to leading order (see Eq. (6.45)).

Although for ε �= 0 there will not be a centre manifold along which there are no
deterministic dynamics, we still expect there to be separation of timescales which
will allow us to identify fast and slow variables. This expectation is supported by
Gillespie simulation of the stochastic process, as illustrated in Fig. 6.9. We pick out
the slow subspace, and so eliminate the fast deterministic dynamics, by setting the
product u(2) · Ã(x) equal to zero, as described in Sect. 4.4.1. This leads to an equation
of the form y2 = 1− y1 + ε f (y1) +O(ε2), where f (y1) is quadratic in y1. In order
to make a comparison to the Moran model, it is required that the line passes through
the points (x, y) = (1, 0) and (x, y) = (0, 1), which implies that f (0) = 0 and

Fig. 6.9 Plots of trajectories for the non-neutral model in the variables x1 and x2. In grey, potential
deterministic trajectories are plotted. A histogram of 50 stochastic trajectories is overlaid in red.
The centre manifold of the neutral theory is plotted as a blue line, while the slow subspace is plotted
in black. The stochastic trajectories can be seen to quickly collapse to the slow subspace, about
which they are confined. Parameters used are V = 600, ε = 0.08, b0 = 2, d0 = 1, c0 = 0.6,
δ1 = δ2 = 0, γ11 = γ22 = 1, γ12 = −1 and γ21 = 0

http://dx.doi.org/10.1007/978-3-319-21218-0_4
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f (1) = 0. This leads to the two conditions

βi = γi i (b0 − d0) + d0δi

b0
, i = 1, 2. (6.54)

With this choice of the birth rates, the slow subspace takes the form

y = (1 − x)
[
1 + εx (γ11 + γ22 − γ12 − γ21) + O

(
ε2

)]
. (6.55)

It is interesting to note that the conditions in Eq. (6.54) have also eliminated any
reference to the death rates δi in Eq. (6.53). Additionally, introducing the parameter

� ≡ γ11 + γ22 − γ12 − γ21, (6.56)

it can be seen that as long as the competition rates do not satisfy � = 0, the slow
subspace will be curved. Simulations show that to an excellent approximation, the
deterministic systemcollapses down to a line given byEq. (6.55), as shown inFig. 6.9.

The effective stochastic dynamics on the slow subspace are found by applying
the same arguments as in the neutral case. Just as in the study of the metapopulation
Moran model, it is assumed that the fast and slow directions do not vary significantly
from the neutral case, so that the same form of the projection operator can be used
when ε �= 0 as was used when ε = 0. Therefore applying Pi j (given by Eq. (4.33)
with Eqs. (6.46) and (6.47)) to Eqs. (6.53) and (6.45), gives Eq. (6.49), but now with

Ā(z) = −εz (1 − z) [�z + (γ12 − γ11) + O (ε)]. (6.57)

Before discussing the relation between the reduced model (defined by Eqs. (6.49),
(6.50) and (6.57)) and the Moran model, the validity of the procedure will be tested
by comparing the results for the probability of fixation and the time to fixation found
from the reduced model to simulation of the original IBM. Since Eqs. (6.57) and
(6.50) have the same functional form as Eqs. (5.14) and (4.25), the solution to the
probability of fixation can be calculated in the samemanner as in the metapopulation
Moran model taken to O(s2), outlined in Appendix G. The fixation probability can
once again be written

Q(z0) = 1 − χ(z0)

1 − χ(1)
. (6.58)

In this case the function χ(z0) is written in terms of l(z0) such that

l(z0) =
√

(b0 − d0)Nε

2b0|�| ((γ11 − γ12) − �z0) (6.59)

and

http://dx.doi.org/10.1007/978-3-319-21218-0_4
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χ(z0) = erfc [l(z0)]

erfc [l(0)]
, if � < 0, (6.60)

χ(z0) = erfi [l(z0)]

erfi [l(0)]
, if � > 0. (6.61)

An illustrative plot of the fixation probability is given in red in Fig. 6.10. The agree-
ment between reduced theory and simulation is excellent. The mean unconditional
time to fixation can also be calculated using Eq. (2.52) with the drift and diffusion
terms of the reduced model. Once again the agreement between the reduced theory
and simulation, depicted in red in Fig. 6.11, is very good.

It is interesting to note that the drift term in the reduced Lotka-Volterra model
with selection, Eq. (6.57), does not have the same form as the well-mixed Moran
model with selection (see Eq. (2.99)). Instead there exists a �z term, which gives an
additional z-dependence. Such a functional form for the drift term can be obtained
from a game theoretic formulation of the Moran model [8]; however there is no
simple mapping between the payoff matrix in game theory and the matrix γ, related
to the competition matrix of the Lotka-Volterra model. The behaviour of the reduced
Lotka-Volterra model can of course be mapped onto the standard Moran model with
selection, Eq. (2.99), if one final condition on the parameters is added, namely� = 0.
In this case, the probability of fixation takes on the same form as Eq. (2.100):

Q(z0) = 1 − exp [−ε(γ11 − γ12)(b0 − d0)N z0/b0]

1 − exp [−ε(γ11 − γ12)(b0 − d0)N/b0]
. (6.62)
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Fig. 6.10 Probability of fixation, Q(z0) as a function of projected initial condition. Continuous
lines are obtained from reduced one-dimensional theory, whilst markers have been obtained from
Gillespie simulations. Green circles are obtained from a neutral system with V = 150, b0 = 3.1,
d0 = 1.1 and c0 = 0.4. Blue square markers are obtained from simulations of the non-neutral
model, with parameters V = 300, ε = 0.01, b0 = 2, d0 = 1, c0 = 0.2, γ11 = 1, γ12 = −0.5,
γ21 = 2, γ22 = 0.5. Note that this results in � = 0 (see Eq. (6.56)). Red triangles are obtained
from a simulation with parameters V = 500, ε = 0.015, b0 = 2, d0 = 1, c0 = 0.8, γ11 = γ22 = 1,
γ12 = γ21 = −1
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Fig. 6.11 Themean unconditional time to fixation T (z0), in terms of the time variable t̄ .Continuous
lines are obtained from the reduced one-dimensional theory,whilstmarkers have been obtained from
Gillespie simulations of the full model. Colours/symbols are related to sets of parameters as defined
in Fig. 6.10

Comparing this with Eq. (2.100), the effective selection pressure can then be seen to
be given by

s = ε(γ11 − γ12)(b0 − d0)

b0
+ O(ε). (6.63)

The probability of fixation for a system inwhich this condition holds is plotted in blue
in Fig. 6.10. The corresponding mean time to fixation is plotted in blue in Fig. 6.11.

While it is possible to obtain a Moran model of the same form as Eq. (2.99) as
the limiting form of the Lotka-Volterra competition model, it is difficult to place a
precise physical meaning on the condition � = 0. Further, if one were to take a
random collection of the matrix elements γi j , the subset that fulfilled this condition
would be vanishingly small. In an ecological context, � would generally be taken to
be positive. This is by the argument that competition within a species is always more
intense than competition between species, as each species tends to inhabit its own
specialised niche. In the context of population genetics, it is not entirely clear that
this is the case, and careful thought needs given to the interpretation of the results
before any strong conclusions can be made. What is clear however, is that allowing
a variable population size has a non-trivial effect on the dynamics of the resulting
non-neutral model. It would therefore be interesting to extend the Lotka-Volterra
competition model to incorporate other evolutionary effects, such as mutation and
migration, and thus test the robustness of results derived from the Moran model.
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Chapter 7
Conclusion

In the introduction to this thesis, some time was spent discussing the choices one
makes in modelling any system. In some sense we are playing a game by which
we wish to incorporate enough detail so as to be realistic and informative, but not
so much as to render the model resistant to interpretation. Having struck the bal-
ance between these competing considerations, we may be further confounded by the
analytic intractability of the resulting problem. While the stochastic nature of the
Moran model, makes it difficult to solve in its entirety, its one-dimensional nature
makes other quantities, such as the fixation probability and fixation time, obtainable.
However many models inspired by nature (especially those which are nonlinear and
in many dimensions) stubbornly resist analytic treatment.

Much of theoretical physics and applied mathematics is concerned with deriving
methods to solve (or approximately solve) such apparently intractable problems. In
this thesis I have explored two methods of fast-variable elimination in stochastic
systems. These techniques, described in Chaps. 3 and 4, are by no means the first
to tackle such problems [1, 4, 13] (nor, without doubt, the last [3, 8]). However as
described in Sect. 2.8, it is my opinion that many existing methods feature a funda-
mental philosophical drawback; while technically rigorous, they are often guilty of
providing effective systems that while of lower dimension than the full system, are
almost as complicated.

In contrast, I believe that the methods outlined in this thesis offer some distinct
advantages. I would argue that both approaches are relatively simple: working in
the SDE setting makes the analogy to deterministic slow-manifold theory clear, and
the basic ideas are intuitively easy to grasp. Moreover, the techniques are generally
applicable; there is no need for a parameter which controls the fast variable, since the
fast direction is determined instead from a linear stability analysis. Nor do the tech-
niques require knowledge of the deterministic trajectories, as is necessary in [9]. The
methods are probably most similar to the direct adiabatic elimination method [14] or
the Haken slaving method [6] in that they are formulated in the SDE setting and fol-
low intuitively from deterministic fast-variable elimination. The methods introduced
in this thesis are however entirely distinct; they do not introduce ill-defined noise
terms in the reduced description and therefore can be used successfully on non-linear
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SDEs with multiplicative noise. Perhaps what is most attractive about both methods
however, is the nature of the resulting system. In general it is simple enough to under-
stand (containing no non-Markovian components for instance) whilst maintaining a
high degree of predictive power.

The conditioning method was the first of the two methods to be introduced.
Arguably it follows deterministic fast-variable elimination in the most direct way, in
that it restricts the dynamics in the fast directions, both deterministic and stochastic,
to be zero. This is achieved by setting the fast variable equal to its nullcline value and
conditioning the noise correlation matrix on the event that it is zero in the fast direc-
tion. Applied first to an illustrative ecological example in Sect. 3.2, the reducedmodel
was found to predict the stationary distribution for the slow variable z well. Particu-
larly impressive was the fact that the reduced description reproduced the behaviour
of the model after the bifurcation of the single fixed point. This is in spite of the fact
that the fast and slow directions had been identified for the single fixed point case
only. The success here is a result of the fact that while the bifurcation introduces two
new fixed points, the fast and slow directions remain relatively unchanged. Still, the
robustness of the method to these variations is perhaps surprising.

In Sect. 3.4, conditioning was used to simplify a linearised SEIR model. Here the
separation in timescale was essentially a product in the disparity between birth/death
rates and infection/recovery rates. Using this example, it was shown that timescale
separation can provide a computational benefit to the analysis of certain problems.
In this particular case, the separation in timescales was the source of a numerical
difficulty [12], which the reduced system avoided.

While the conditioning method performed very well overall, a particular area of
concern was identified. If the noise covariance matrix of the full system is singular,
the conditioning method can predict no noise in some of the remaining directions.
Such a case is described in Sect. 3.5. To remedy this, the second of the elimination
methods was developed.

The projection matrix method was first introduced in Chap. 4, and is identical to
the conditioning method in its treatment of the deterministic component of a set of
SDEs. Its treatment of the noise differs however. Rather than restricting the noise
in the fast direction to zero (as in the conditioning method), a projection matrix is
constructed which isolates the component of the noise in the slow direction. The
noise in the reduced system is then simply the component of the noise in the slow
direction of the full system.At first glance this seems drastic, however as ismentioned
in Sect. 4.1, this is equivalent to taking the marginal distribution of the noise in the
full system, as an approximation for the noise in the reduced system. The projection
matrix method does not suffer the same drawbacks as the conditioning method when
the noise covariance matrix is singular.

Of particular interest was the application to the metapopulation Moran model
described in Sect. 4.4. Utilising the projection matrix method, one can move from a
description of the dynamics in D-variables (representing each subpopulation in the
system) to an effective description in terms of one variable z. The resulting equations
are then amenable to analysis, with explicit formulae for the parameters in the final,
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simplified equations. These parameters can be straightforwardly calculated from the
network structure of the islands.

The reduced, effective system was compared to the results obtained from a direct
simulation of the IBM for a range of different networks and parameters in Chap.5.
The method gives excellent results for most networks and parameter values. Where
it does not work so well, there are reasons this is to be expected. For instance, the
magnitude of the real part of the non-zero eigenvalues of H should be greater than
both s and N−1/2, so that the separation of timescales is sufficient to apply the
approximation, as detailed in Sect. 5.3. Furthermore, parameters modelling similar
effects in the model are assumed to be of the same order. Therefore, no island is
assumed to be an order or two of magnitude bigger than other islands (all βi are of
order one). Even if these conditions are violated, the elimination of fast variables
may still be possible; if it is not, then a different calibration could describe some of
these situations. For example, the diagonal elements of H could be made to scale
with N−1/2, which would result in a different set of formulae. In [2], the diagonal
elements were chosen to scale like N−1, which accounts in part for the differences
between the results given in that paper and those given in this thesis.

Though the effective metapopulation Moran model has only been expressed to
order s2, the technique is capable of being generalised to higher orders in s. Given
the typical size of selection strengths, working to this order is entirely reasonable,
and indeed most authors only keep terms of order s. It should be emphasised that
although s is frequently compared numerically to N−1/2 or N−1, s is not, as in some
papers, set equal to N−1/2 or N−1; s and N are two independent parameters. One of
the reasons for going to order s2 is to show that the analysis of the stochastic aspects
of migration-selection balance could be considerably extended using our results.

The model presented in Sect. 4.3 is slightly different from the previous work cited
concerning migration-selection balance. However, I have shown that the projection
matrix method, being more general, can be used to investigate a broader range of
parameters than previously attempted, including non-symmetric migration, arbitrary
deme topology and an arbitrary range of selective pressures across the demes [5, 7,
15, 16]. Further, themechanism that allows the approximation towork so successfully
is the dominance of the large and linear effect of migration (embodied by the matrix
H in the metapopulation model) over smaller non-linear and stochastic terms. This
allows the method to be extended, in a straightforward way, to other problems. In
Sect. 6.1, an example of such an extension was given—the metapopulation Moran
model with mutation. The form of the subpopulations and structure of the migration
once again led to non-trivial behaviour relative to the well-mixed analogue. This
behaviour was once again well-predicted by the reduced model.

In Sect. 6.2 the two methods of fast-variable elimination were compared in more
detail. In addition to the case of singular diffusion matrix, it was found that the
projection matrix method outperforms the conditioning method in two further ways.
The first is that, in the case the system under consideration is equivalent to a linear
FPE, the projection matrix method provides a quantitatively better approximation
of the full system, as discussed in Sect. 6.2.1. The second is that in general the
conditioning method has the potential to under-predict the magnitude of the noise.
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As described in Sect. 6.2.2, this is a result of discounting strong correlations between
noise in the fast and slow directions, which the projection matrix method picks up.

Despite this, the conditioning method does not do such a terrible job. In both
methods wemerely seek an approximation for the form of the noise. In the ecological
example first explored in Sect. 3.2, it was found that the projection matrix method
gave an approximation of the noise (see Eq. (4.3)) with a cleaner functional form
than the conditioning method (see Eq. (3.24)). This allowed an analytic solution for
the stationary distribution, Eq. (4.4), to be obtained. It is not inconceivable then,
that there might arise particular situations in which the converse is true, that the
conditioning method provides a reduced description more analytically tractable than
the projection matrix method. While the result could still suffer from the drawbacks
highlighted in Sects. 3.5 and 6.2, as a proxy for the form of the noise it may prove
illuminating.

The relationship between bothmethods and those discussed in Sect. 2.8 in the SDE
formalism have been discussed. It may be asked, quite fairly, ‘what is the relation to
other methods developed in the FPE formalism?’. The answer to this question is by
no means clear and this is certainly an area that it would be interesting to investigate.
Bridging this gap may also lead to a more mathematically rigorous underpinning to
the theory, which without doubt it would be useful to have. The first step towards
a formal proof of the convergence between the reduced and full system is given in
Sect. 6.2.1. While this only holds for linear systems, it goes someway to explaining
the success of the methods in the region of a fixed point. Ultimately, the full proof
of convergence must be left for further work, though a comparison with the methods
of Parsons and Quince may prove fruitful [10, 11].

Even though, for the moment, there is not a rigorous mathematical underpinning
to the two methods detailed here, it is perhaps worthwhile making a final point. In
the applications discussed in this thesis, it is hard to imagine the methods performing
better. Further, I believe that even in light of more sophisticated methods, those out-
lined here provide at the very least a good starting point in the investigation ofmodels
featuring a separation of timescales. The models described in Sects. 3.4, 4.3 and 6.3
are canonical models, and yet studies utilising timescale separation arguments are
comparatively rare in the literature. Perhaps this is because of the perceived difficulty
of removing fast degrees of freedom from stochastic systems. Here however, I have
shown that the complex machinery involved in stochastic normal form theory and
FPE projection are not always entirely necessary. To a certain extent, the stochastic
nature of the problems investigated contributes to the success of the techniques, as
unimportant trends which the reduced model may not capture are averaged out when
considering the ensemble.

A reasonable question one might ask is, does the behaviour of the metapopulation
Moran model analysed in Chap.5 survive if the population size is not fixed? The first
steps toward answering the question have been taken in Sect. 6.3. There the Lotka-
Volterra competition model was introduced. While originally developed as a model
of interacting populations in ecology, there is nothing conceptually that prevents its
use in modelling population genetics. Unlike the Moran model, the population in the
Lotka-Volterramodel is not held fixed artificially by coupling birth and death. Instead

http://dx.doi.org/10.1007/978-3-319-21218-0_6
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the size of the population is moderated by competition between individuals. In this
sense the Lotka-Volterra model can be seen to be preferable to the Moran model in
terms of realism.Using the fast-variable eliminationmethods developed earlier in this
thesis, it was shown that for neutral systems, the Lotka-Volterra competition model
for two species behaves at long times like the haploid Moran model for two allele
types. Once selection was incorporated, the relationship was not so straightforward.
It was seen that, in general, selection operated in a way distinct from that observed
in the Moran model.

The extension of the Lotka-Volterra model to many islands would of course be
very interesting, and in particular an exploration as to the robustness of the behaviour
predicted by the metapopulation Moran model. There are also a host of other exten-
sions which would be interesting to explore, such as the incorporation of multi-allele
effects, frequency-dependent selection and diploidy of the individuals. More gener-
ally, the application of themethod to othermodels outside population geneticsmay be
possible. For instance, one could investigate ametapopulation susceptible-infectious-
recovered model. Here the subpopulations would be representative of cities, and the
existence of a separation of timescales dependent on the relative size of the disease
and migration parameters. Would it be possible, as in the case of the Moran model,
to reduce the full system to an effective, single population model?

Systems exhibiting a separation of timescales are so ubiquitous in the real world,
that often their removal is considered part of the modelling process. However, as has
been demonstrated in this thesis, there are many systems in which such a separation
is woven deeper in to the dynamics, so that it emerges naturally from the model. The
techniques developed in this thesis have been useful in making analytic progress in
a series of canonical models from epidemiology, population genetics and ecology. I
hope that the methodologies expounded here will be taken up by other researchers
and will lead to the analysis of more complex and realistic models.
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Appendix A
The Conditional and Marginal
of a Multivariate Gaussian
Distribution

A multivariate Gaussian distribution for the random m-dimensional vector x takes
the form

f (x) = 1√
(2π)m |�| exp

[
−1

2
(x − μ)T �−1(x − μ)

]
(A.1)

where μ is the mean value of x, � is the covariance matrix and |�| its determinant.
We wish to calculate the conditional distribution for this process, given some subset
of x is fixed, and also the marginal distribution given that we integrate out a subset
of the x variables. We begin by partitioning the vectors x and μ and the matrices �;

x =
(

x1
x2

)
, μ =

(
μ1
μ2

)
, � =

(
�11 �12
�21 �22

)
, (A.2)

where we note that �21 = �T
12, and �11 and �22 are symmetric. Further, let the

elements of the partitioned inverse of � be denoted with upper indices, so that

�−1 =
(

�11 �12

�21 �22

)
. (A.3)

Since � is symmetric, so is �−1, so that �12 = [�21]T . Now, the partitioned
elements of � and �−1 can be related by noting that

��−1 =
(

�11 �12
�21 �22

)(
�11 �12

�21 �22

)
(A.4)

=
(

�11�
11 + �12�

21 �11�
12 + �12�

22

�21�
11 + �22�

21 �21�
12 + �22�

22

)
(A.5)

=
(

I 0
0 I

)
. (A.6)
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This allows us to express the inverted quantities �i j more naturally in terms of the
elements of the covariance matrix �kl . Solving for �11 using the first column of
(A.5) and for �22 using the second column, we obtain

�11 =
(
�11 − �12�

−1
22 �T

12

)−1
, (A.7)

�22 =
(
�22 − �T

12�
−1
11 �12

)−1
, (A.8)

and similarly for �12 = [�21]T ,

�12 = −�−1
11 �12�

22. (A.9)

For our purposes, a more convenient form for Eq. (A.7) can be obtained. From the
first element of Eq. (A.5) we have

�11 = �−1
11 − �−1

11 �12�
21. (A.10)

From the first entry in the second column of Eq. (A.5) we obtain

�12 = −�−1
11 �12�

22, or equivalently �21 = −�22�T
12�

−1
11 . (A.11)

Combining these gives an alternative form for �11,

�11 = �−1
11 + �−1

11 �12�
22�T

12�
−1
11 . (A.12)

With these partitioned quantities in hand, we may now proceed to consider an alter-
nate form of the Gaussian distribution.

The Gaussian distribution (A.1) may be rewritten

f (x) = 1√
(2π)m |�| exp

[
−1

2
Q(x1, x2)

]
(A.13)

where Q(x1, x2) is given by

Q(x1, x2) = ((x1 − μ1)
T , (x2 − μ2)

T )

(
�11 �12

�21 �22

)(
x1 − μ1
x2 − μ2

)
. (A.14)

Expanding out the various partitioned elements, we arrive at

Q(x1, x2) = (x1 − μ1)
T �11(x1 − μ1)

+ 2(x1 − μ1)
T �12(x2 − μ2) + (x2 − μ2)

T �22(x2 − μ2).
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Substituting expressions (A.9) and (A.12) into this leads to

Q(x1, x2) = (x1 − μ1)
T �−1

11 (x1 − μ1)

+
[
(x1 − μ1)

T �−1
11 �12

]
�22

[
�T

12�
−1
11 (x1 − μ1)

]

− 2
[
(x1 − μ1)

T �−1
11 �12

]
�22(x2 − μ2)

+ (x2 − μ2)
T �22(x2 − μ2) (A.15)

or, by further simplifying, as

Q(x1, x2) = (x1 − μ1)
T �−1

11 (x1 − μ1)

+
{
(x2 − μ2)

T −
[
�T

12�
−1
11 (x1 − μ1)

]T
}

× �22
{
(x2 − μ2) −

[
�T

12�
−1
11 (x1 − μ1)

]}
.

To make this expression a little more compact, the vector function μ̃2(x1) is intro-
duced,

μ̃2(x1) = μ2 + �T
12�

−1
11 (x1 − μ1), (A.16)

so that Eq. (A.15) can be rewritten in terms of the functions Q1(x1) and Q2(x1, x2)

Q1(x1) = (x1 − μ1)
T �−1

11 (x1 − μ1), (A.17)

Q2(x1, x2) = [x2 − μ̃2(x1)
]T

�22 [x2 − μ̃2(x1)
]
, (A.18)

as

Q(x1, x2) = Q1(x1) + Q2(x1, x2). (A.19)

We have thus far separated the full Gaussian distribution for x into the product of two
functions involving Q1(x1) and Q2(x1, x2) respectively. The first of these functions
has the same functional form as a Gaussian distribution for only x1 with covariance
matrix �11. We would like to separate this distribution out entirely. To do this we
must address the |�| term in denominator of Eq. (A.1).

We wish to factorise the component of |�| arising from �11. To do this we note
that � may be decomposed as

(
�11 �12
�21 �22

)
=
(

�11 0
�T

12 I

)(
I �−1

11 �12

0 �22 − �T
12�

−1
11 �12

)
. (A.20)
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Since the determinant of the product of twomatrices in the product of the determinant
of each matrix, |AB| = |A||B|, we can write

|�| = |�11||�22 − �T
12�

−1
11 �12|

= |�11||
[
�22

]−1 |. (A.21)

Substituting Eqs. (A.19) and (A.21) into (A.1),

f (x) = 1√
(2π)r |�11| exp

[
−1

2
(x1 − μ1)

T �−1
11 (x1 − μ1)

]
×

1√
(2π)m−r | [�22

]−1 |
exp

[
−1

2
(x2 − μ̃2(x1))

T �22(x2 − μ̃2(x1))

]

(A.22)

where we set x1 to be a vector of length r and x2 to be a vector of length m − r . This
can of course be expressed as the product of two normal distributions;

f (x1, x2) = N(r)(μ1, �11)N(m−r)

(
μ̃2(x1),

[
�22

]−1
)

, (A.23)

where N(r) is a distribution for the r x1 variables and N(m−r) is a distribution for
the m − r x2 variables. From this the marginal distribution for x1 can be simply
calculated by integrating over x2

f (x1) =
∫

f (x1, x2)dx2 = N(r)(μ1, �11) . (A.24)

The conditional distribution f (x2|x1) can in turn be calculated fromBayes’ theorem,
Eq. (2.2);

f (x2|x1) = f (x1, x2)

f (x1)

= N(m−r)

(
μ̃2(x1),

[
�22

]−1
)

. (A.25)

Following an analogous proof, the distribution f (x1, x2) conditioned on x2 taking
a particular value is given by

f (x1|x2) = N(r)

(
μ̃1(x2),

[
�11

]−1
)

. (A.26)
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where �11 is given by Eq. (A.7), and μ̃1(x2) is given by

μ̃2(x1) = μ1 + �12�
−1
22 (x2 − μ2). (A.27)

In the case where the mean of the distribution is zero and the conditional variable is
zero, x2 = 0, the distribution further simplifies to

f (x1|0) = N(r)

(
0,
[
�11

]−1
)

. (A.28)

This is the type of conditioning applied to the zero-mean Gaussian noise termκ(t) =
(κz,κw) in Chap.3.
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Appendix B
Floquet Theory

The analogue of a linear stability analysis for systems with periodic components
is known as Floquet theory [6]. It can also play an important role in the analysis
of stochastic fluctuations about a deterministic trajectory [2, 7]. In this appendix
the general formulation of Floquet theory is discussed before the more detailed
application to linear stochastic systems is given.

Floquet theory gives the solutions to sets of linear differential equations in the
form of Eq. (3.42), where J (t) is periodic with a period T . The general solution can
be shown to be

ξ(t) =
m∑

i=1

ci q(i)(t)eσ(i)t , (B.1)

where q(i)(t) is a periodic vector and σ(i) are termed the Floquet exponents of the
system. Meanwhile the quantities ρ(i) = eσ(i)T are called the Floquet multipliers of
the system.

In particular one can work in a canonical form for calculational ease, with canoni-
cal quantities denoted with a further superscript 0. The canonical form is constructed
from m decomposed solutions to Eq. (3.42) such that ξ(0,i)(t) = q(0,i)(t)eσ(i)t . A
fundamental matrix of these solutions may then be introduced along with matrices
Y (0) and Q(0). For the case m = 3 these may be expressed as

X (0) = [ξ(0,1)(t), ξ(0,2)(t), ξ(0,3)(t)], (B.2)

X (0) = Q(0)Y (0), (B.3)

Q(0) = [q(0,1)(t), q(0,2)(t), q(0,3)(t)], (B.4)

Y (0) = Diag[eμ(i)t ]. (B.5)

A method for obtaining the Floquet multipliers μ(i) along with the canonical form
of the solutions is now required. Obtaining both is dependent on the determination
of a matrix known as the monodromy matrix, which we shall now discuss.
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The monodromy matrix, D, is defined such that X (t + T ) = X (t)D, for any fun-
damental matrix X (t) constructed from linearly independent solutions to Eq. (3.42).
It can be shown that while the monodromy matrix is dependent on the fundamental
matrix chosen, its eigenvalues are not [6]. The eigenvalues of D are ρ(i), the Floquet
multipliers of the system. Further, if a matrix W is constructed from the eigenvectors
of D, the canonical fundamental matrix X (0)(t) is related to a general fundamental
matrix X (t) via X (0)(t) = X (t)W . Therefore, the monodromy matrix allows the
canonical fundamental matrix X (0)(t) to be determined from a general fundamental
matrix X (t), along with the matrix Y (0). From these the periodic matrix Q(0)(t) can
also be deduced.

In general, once the fundamental matrix is obtained it will have to be transformed
into canonical form by a numerical determination of the monodromy matrix, D =
X−1(t)X (t +T ). For a systemwith initial conditions t = 0, X (0) = I , this simplifies
to D = X (T ).

Now the stochastic system can be considered;

dξ

dt
= J (t)ξ + η(t), (B.6)

where η(t) is a vector of Gaussian white noise terms defined as in Eq. (2.67), except
that now the noise covariance matrix depends explicitly on time through the varying
parameter β(t); 〈ηi (t)η j (t ′)〉 = εBij(t)δ(t − t ′). The solution may be constructed as
a sum of the general solution to Eq. (3.42) along with a particular solution, so that

ξ(t) = X (0)(t)ξ(0) + X (0)(t)

t∫
t0

[
X (0)(s)

]−1
η(s)ds, (B.7)

or, setting the initial conditions in the infinite past andmaking a change of integration
variable s → s′ = t − s

ξ(t) = Q(0)(t)

t∫
t0

Y (0)(s′)
[

Q(0)(t − s′)
]−1

η(t − s′)ds′. (B.8)

In the course of the analysis conducted in Sect. 3.4, ξ(t) represents some stochastic
fluctuation around limit cycle behaviour. An obvious quantity of relevance is the
power spectrum of such fluctuations. To obtain the power spectrum, one first calcu-
lates the two-time correlation function C(t + τ , t) = 〈ξ(t + τ )ξT (t)〉; substituting
Eq. (B.8) one obtains

Ci j (t + τ , t) = Q(0)(t + τ )Y (0)(τ )�(t)
[

Q(0)(t)
]T

, (B.9)
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with

�(t) =
∞∫

t0

Y (0)(s)�(t − s)Y (0)(s)ds (B.10)

and

�(s) =
[

Q(0)(s)
]−1

B(s)

[[
Q(0)(s)

]−1
]T

. (B.11)

The correlation function, C(τ ) is then simply related to the two-time correlation
function by

C(τ ) = 1

T

T∫
0

C(t + τ , t)dt. (B.12)

In turn, the Wiener-Khinchin theorem tells us that the power spectrum, P(ω), is
simply the Fourier transform of the correlation function, and so

Pi (ω) =
∫

Ci i (τ )eiωτ dτ . (B.13)

The intermediate steps are left to the reader, but full details are found in [3]. A key
point to note is that Eqs. (B.7)–(B.11) hold only for the canonical matrices X (0), Q(0)

and Y (0).



Appendix C
Derivation of the Fokker-Planck Equation
for the Metapopulation Moran Model

In this appendix, the details of the master equation expansion (described in Sect. 2.4)
are given for themetapopulationMoranmodel, introduced in Sect. 4.3. For generality,
the expansion is described for the model with selection which is defined by the
transition rates (4.11) with master Eq. (2.18). The neutral case can be recovered by
setting wA = wB = 1.

As in the one-island case described in Sect. 2.9.1, expressions (4.11) are simplified
by setting [wB]i = 1 and [wA]i = 1 + sαi for each island. The parameter s is an
indicative selection strength, while the elements of α will be assumed to be of order
1 and will primarily be used to signify the direction of selection. If αi > 0 then
[wA]i > [wB]i and allele A is advantageous on island i , while if αi < 0, allele A
will be deleterious on that island. Finally, if we assume that the selection strength s
is small, we can express the above transition rates as a Taylor series in s. Suppressing
the dependence of T (n|n′) on states that do not vary in a particular transition, we
obtain

T (ni + 1|ni ) =
D∑

j=1

(βi N − ni )

βi N − δi j
Gi j ×

(
n j

β j N
+ sα j

n j (β j N − n j )

(β j N )2
− s2α2

j

n2
j (β j N − n j )

(β j N )3
+ O(s3)

)
,

T (ni − 1|ni ) =
D∑

j=1

ni

βi N − δi j
Gi j ×

(
1 − n j

β j N
− sα j

n j (β j N − n j )

(β j N )2
+ s2α2

j

n2
j (β j N − n j )

(β j N )3
+ O(s3)

)
.

The dynamics can be seen to be that of a one-step process; any one transition can
only move the system from an initial state n′ = (n1, . . . ni , . . . nD) to the adjacent
states n = (n1, . . . ni ±1, . . . nD). We can exploit this fact notationally; introducing
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new state variables x such that xi = ni/βi N , we can write f +
i (xi ) and f −

i (xi ) as
shorthand for the transition rates (in terms of the new variables) for moving up to
state xi + 1/βi N or down in state xi − 1/βi N from initial state x′. This gives

f +
i (xi ) = Gii (1 − xi )

1 − (βi N )−1

[
xi + sαi xi (1 − xi ) − s2α2

i x2i (1 − xi )
]

+ (1 − xi )

D∑
j �=i

Gi j

[
x j + sα j x j (1 − x j ) − s2α2

j x2j (1 − x j )
]

+ O(s3),

f −
i (xi ) = Gii xi

1 − (βi N )−1

[
(1 − xi ) − sαi xi (1 − xi ) + s2α2

i x2i (1 − xi )
]

+ xi

D∑
j �=i

Gi j

[
(1 − x j ) − sα j x j (1 − x j ) + s2α2

j x2j (1 − x j )
]

+ O(s3).

(C.1)

For now let us leave the specific form of these transition rate functions alone,
pausing only to note that the typical deme size, N , now only appears in the first term
of f +

i (xi ) and f −
i (xi ).

We now re-express the master equation in terms of the transition rates f +
i (xi ) and

f −
i (xi ):

dp

dt
=

D∑
i=1

[
f +
i

(
xi − 1

βi N

)
p

(
xi − 1

βi N
, t

)
− f +

i (xi )p(xi , t)

]

+
D∑

i=1

[
f −
(

xi + 1

βi N

)
p

(
xi + 1

βi N
, t

)
− f −

i (xi )p(xi , t)

]
. (C.2)

This is equivalent to Eq. (2.29), albeit with a modified notation. Assuming the typical
deme population N to be large, we can carry out a Taylor expansion in N−1 as
described in Sect. 2.4. The right-hand side of the master Eq. (C.2) becomes

−
D∑

i=1

{(
1

βi N

)
∂

∂xi

[
f +
i (xi )p(xi , t)

]}+ 1

2!
D∑

i=1

{(
1

βi N

)2 ∂2

∂x2i

[
f +
i (xi )p(xi , t)

]}

+
D∑

i=1

{(
1

βi N

)
∂

∂xi

[
f −
i (xi )p(xi , t)

]}+ 1

2!
D∑

i=1

{(
1

βi N

)2 ∂2

∂x2i

[
f −
i (xi )p(xi , t)

]}
,

plus terms in N−3 and higher.
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We now return to the terms in f +
i and f −

i which involve N . They are identical to
lowest order in s, and equal

Gii (1 − xi )xi

1 − (βi N )−1 . (C.3)

Now in the master equation f +
i and f −

i appear with different signs in the terms
involving the first derivative, and so they cancel. Although their contributions add
in the terms involving the second derivative, if we expand the expression (C.3) in
powers of N−1 we see that these giveO(N−3) contributions in the expansion, which
we are discarding. By the same argument, the terms in f +

i and f −
i which involve N

and powers of s will also give O(N−3) contributions when multiplying the second
derivative, and so can also be discarded. Finally, when these s-dependent terms
multiply the first derivative, they will give contributions s/N 2 and s2/N 2, but we
will not include such terms in the diffusion matrix B (see below), and so we do not
include them in this context either. So, in summary, the N dependence which appears
in f +

i and f −
i in Eq. (C.1) may be omitted to the order we are working, and the only

N dependence is that shown explicitly in the FPE.
We now define

Ai (x) = 1

βi

[
f +
i (x) − f −

i (x)
]
, Bii (x) = 1

β2
i

[
f +
i (x) + f −

i (x)
]
. (C.4)

With these definitions the expansion of the master equation in inverse powers of N
takes the form

∂ p(x, t)

∂t
= − 1

N

D∑
i=1

∂

∂xi
[Ai (x)p(x, t)] + 1

2N 2

D∑
i=1

∂2

∂x2i
[Bii (x)p(x, t)] . (C.5)

Substituting the explicit forms for f ±
i given by Eq. (C.1) into Eq. (C.4) gives the

elements of the vector A(x) as

Ai (x) = 1

βi

⎧⎨
⎩

D∑
j �=i

Gi j (x j − xi ) + s
D∑

j=1

Gi jα j x j (1 − x j )

− s2
D∑

j=1

Gi jα
2
j x2j (1 − x j )

⎫⎬
⎭+ O(s3),

and a diagonal diffusion matrix with elements given by

Bii (x) = 1

β2
i

⎧⎨
⎩xi

D∑
j=1

Gi j +
D∑

j=1

Gi j x j − 2xi

D∑
j=1

Gi j x j

⎫⎬
⎭+ O(s). (C.6)
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The truncation of the series in s, should be chosen to be consistent with the truncation
in the expansion in terms of N . This will clearly depend on the assumed size of s. If
one sets s = 0, the above model reduces to that stated for the neutral case, Eqs. (4.9)
and (4.10).
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Appendix D
Specification of Parameters Used in Figures

In order to aid the reproducibility of the results in this thesis, this appendix gives sets
parameters omitted for brevity from Chaps. 5 and6.

In Fig. 5.1, results from three different neutral metapopulation Moran systems
are given. The results given in red/triangles are obtained from a system with the
following parameters;

β =
⎛
⎝ 1
1
1

⎞
⎠ , m =

⎛
⎝ 0.892 0.082 0.253
0.068 0.896 0.137
0.040 0.022 0.610

⎞
⎠ . (D.1)

The results in blue/circles are obtained from a system with both a symmetric migra-
tion matrix and a symmetric H matrix;

β =
⎛
⎝1
1
1

⎞
⎠ , m =

⎛
⎝ 0.88 0.06 0.06
0.06 0.88 0.06
0.06 0.06 0.88

⎞
⎠ . (D.2)

The results in green/squares are obtained from an unusual system in which the prob-
ability of remaining on the first island is smaller than the probability that it migrates.
The parameters for this system are

β =
⎛
⎝1
1
1

⎞
⎠ , m =

⎛
⎝ 0.014 0.029 0.006
0.847 0.932 0.077
0.139 0.039 0.917

⎞
⎠ . (D.3)

In the right panel of Fig. 5.2, the parameters for the plots are taken from some of
the randomly generated systems which yield the rN values in the histogram in the
left panel. In the main plots, the results given in blue/circles correspond to a system
with a small rN value. The parameters used for this system are
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β =

⎛
⎜⎜⎝
1
1
1
1

⎞
⎟⎟⎠ , m =

⎛
⎜⎜⎝
0.854 0.151 0.038 0.202
0.016 0.606 0.049 0.001
0.096 0.094 0.903 0.103
0.034 0.149 0.010 0.694

⎞
⎟⎟⎠ . (D.4)

The results in green/squares meanwhile are obtained from a systemwith a symmetric
migration matrix, which yields rN = 1. The parameters are

β =

⎛
⎜⎜⎝
1
1
1
1

⎞
⎟⎟⎠ , m =

⎛
⎜⎜⎝

0.9 0.03 . . . 0.03 . . . 0.03 . . .

0.03 . . . 0.9 0.03 . . . 0.03 . . .

0.03 . . . 0.03 . . . 0.9 0.03 . . .

0.03 . . . 0.03 . . . 0.03 . . . 0.9

⎞
⎟⎟⎠ . (D.5)

The results in the right-inset plots are related the distribution on the left-inset. Once
again those in blue/circles correspond to a system with a small rN value, with the
parameters given by

β =

⎛
⎜⎜⎝
1
1
1
1

⎞
⎟⎟⎠ , m =

⎛
⎜⎜⎝
0.557 0.023 0.029 0.041
0.002 0.956 0.088 0.177
0.185 0.014 0.838 0.033
0.256 0.007 0.045 0.749

⎞
⎟⎟⎠ . (D.6)

The results in the inset plot in green/squares are again given by a symmetricmigration
matrix with islands all of the same size, and the parameters given by Eq. (D.5). The
plots in red/triangles correspond to large rN values in the left-inset histogram, with
the following parameters used;

β =

⎛
⎜⎜⎝
1
1
5
1

⎞
⎟⎟⎠ , m =

⎛
⎜⎜⎝
0.803 0.079 0.128 0.033
0.027 0.802 0.159 0.012
0.083 0.042 0.556 0.025
0.087 0.077 0.157 0.930

⎞
⎟⎟⎠ . (D.7)

In Fig. 5.3 the migration matrix for each of the systems analysed is the same. This
is

m =
⎛
⎝ 0.513 0.056 0.208
0.231 0.833 0.208
0.256 0.111 0.584

⎞
⎠ . (D.8)

All the other parameters of the various systems are given in the caption to this figure.
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In Fig. 5.4 the migration matrix for the system under consideration is

m =

⎛
⎜⎜⎝
0.714 0.050 0.143 0.077
0.036 0.750 0.190 0.077
0.071 0.050 0.619 0.077
0.179 0.150 0.048 0.769

⎞
⎟⎟⎠ . (D.9)

In Fig. 5.5 two sets of data related to two separate systems are compared. Data
from the first system is given in blue/circles and relates to a two-deme system with
the migration matrix

m =
(
0.856 0.167
0.154 0.833

)
. (D.10)

The second system, with results plotted in red/triangles, is one comprised of four
demes with the migration matrix

m =

⎛
⎜⎜⎝
0.714 0.050 0.143 0.077
0.036 0.750 0.190 0.077
0.071 0.050 0.619 0.077
0.179 0.150 0.048 0.769

⎞
⎟⎟⎠ . (D.11)

All other parameters for these systems are listed in the caption of Fig. 5.5.
In Fig. 5.9 all the parameters for the main plots are given. The migration matrix

relating to the inset plots was omitted in the main text however. It is

m =

⎛
⎜⎜⎜⎜⎝

0.800 0.050 0.025 0.100 0.025
0.050 0.800 0.025 0.025 0.100
0.025 0.025 0.800 0.000 0.150
0.100 0.025 0.000 0.800 0.075
0.025 0.100 0.150 0.075 0.650

⎞
⎟⎟⎟⎟⎠ . (D.12)

Finally, in Fig. 6.4, all the parameters relating to the plots have been omitted. The
system yielding the stationary distribution in the left panel has parameters

D = 3
N = 150
b = 0.5

, β =
⎛
⎝ 2

1
1.5

⎞
⎠ , ω1 =

⎛
⎝ 5 × 10−3

6 × 10−4

9 × 10−4

⎞
⎠ , ω2 =

⎛
⎝ 1 × 10−3

5 × 10−3

4 × 10−4

⎞
⎠
(D.13)

and

m =
⎛
⎝ 0.900 0.050 0.030
0.100 0.900 0.070
0.000 0.050 0.900

⎞
⎠ . (D.14)
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The system yielding the stationary distribution in the right panel meanwhile has
parameters

D = 5
N = 120
b = 0.5

, β =

⎛
⎜⎜⎜⎜⎝

2
1
1.5
1
3

⎞
⎟⎟⎟⎟⎠ , ω1 =

⎛
⎜⎜⎜⎜⎝

1 × 10−4

5 × 10−4

4 × 10−4

2 × 10−3

9 × 10−5

⎞
⎟⎟⎟⎟⎠ , ω2 =

⎛
⎜⎜⎜⎜⎝

5 × 10−3

6 × 10−4

9 × 10−4

7 × 10−3

1 × 10−3

⎞
⎟⎟⎟⎟⎠
(D.15)

and the migration matrix

m =

⎛
⎜⎜⎜⎜⎝

0.900 0.050 0.020 0.010 0.020
0.020 0.850 0.030 0.020 0.020
0.020 0.050 0.920 0.010 0.030
0.020 0.090 0.010 0.960 0.020
0.040 0.020 0.020 0.000 0.910

⎞
⎟⎟⎟⎟⎠ . (D.16)



Appendix E
Moran Model with Selection: Fixation Time

Themean time to fixation in the reducedmetapopulation system, T (z0), is found from
the backward FPE, in exactly the same way as described in Sect. 2.5.2. Therefore,
analogous to Eq. (2.52), the equation reads

Ā(z0)

N

dT

dz0
+ B̄(z0)

2N 2

d2T

dz20
= −1, (E.1)

where z0 is the initial starting point on the centre manifold (or slow subspace). The
boundary conditions are as for the single island case, that is, T (0) = 0 and T (1) = 0.
In this appendix we discuss the analytic solution of Eq. (E.1) when Ā(z0) and B̄(z0)
are given by Eqs. (4.35) and (4.25).

The result for the neutral case is well known [5]. Setting s = 0 in Eq. (4.35) gives
Ā(z0) = 0, and direct integration of Eq. (E.1) gives Eq. (2.54), albeit divided by a
factor of b1 and with x0 replaced by z0. At order s, Ā(z) = sa1z(1 − z), and so the
equation for T (z0) becomes

σz0(1 − z0)

M

dT

dz0
+ z0(1 − z0)

M2

d2T

dz20
= −1, (E.2)

where we have defined new parameters M = N/
√

b1 and σ = a1s/
√

b1. The reason
for introducing these new parameters, other than on grounds of simplicity, is that
Eq. (E.2) is exactly the equation found in the single island case with selection.

To solve it we introduce φ(z0) = dT/dz0, so that the equation now reads

dφ

dz0
+ Mσφ = − M2

z0(1 − z0)
. (E.3)

This equation is difficult to deal with analytically and numerically because of the
singularities on the right-hand side at precisely the values of z0 where we need to
impose the boundary conditions. One can avoid this problem bywritingφ = φ0+φs ,

© Springer International Publishing Switzerland 2015
G.W.A. Constable, Fast Variables in Stochastic Population Dynamics,
Springer Theses, DOI 10.1007/978-3-319-21218-0

151

http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_2
http://dx.doi.org/10.1007/978-3-319-21218-0_4
http://dx.doi.org/10.1007/978-3-319-21218-0_4
http://dx.doi.org/10.1007/978-3-319-21218-0_4
http://dx.doi.org/10.1007/978-3-319-21218-0_2


152 Appendix E: Moran Model with Selection: Fixation Time

and choosing φ0 so that the term dφ0/dz0 cancels the right-hand side of Eq. (E.3).
This choice means that φ0 is simply the s = 0 solution, and the equation for φs is
then

dφs

dz0
+ Mσφs = −Mσφ0 = M3σ [ln z0 − ln(1 − z0)] , (E.4)

which on the left-hand side is exactly the same as the equation for φ, but with a right-
hand side which is less divergent as z0 → 0 or z0 → 1. Although this right-hand
side is still divergent, its integral is not, which is all that we need. If we do require a
convergent expression we can repeat the process, and write φs = φ1 + φ2, choosing
φ1 so that the term dφ1/dz0 cancels the right-hand side of Eq. (E.4).

We can now multiply Eq. (E.4) by eMσz0 to find

d

dz0

[
eMσz0φs

]
= M3σ [ln z0 − ln(1 − z0)] eMσz0 , (E.5)

which allows the integration to be straightforwardly carried out. One finds

Ts(z0) = c1e−Mσz0 + c2

+ M3σ

∫ z0

0
dy e−Mσy

∫ y

0
dx eMσx [ln x − ln(1 − x)] , (E.6)

where Ts is such that dTs/dz0 = φs and c1 and c2 are integration constants. Before
imposing the boundary conditions, we can simplify the double integral by differen-
tiating the inner integral and integrating by parts. This gives

Ts(z0) = c1e−Mσz0 + c2

− M2e−Mσz0

∫ z0

0
dx eMσx [ln x − ln(1 − x)]

+ M2
∫ z0

0
dy [ln y − ln(1 − y)] . (E.7)

The last term in Eq. (E.7) is simply the s = 0 mean time to fixation, and so applying
the boundary conditions one obtains the Eqs. (5.12) and (5.13) given in the main text.

The calculation of T (z0) when Ā(z0) is taken to order s2 can be carried out
in a similar way, but the results are more complicated and an integration by parts
cannot straightforwardly simplify the double integral down to a single integral. The
analogous equation to (E.3) is

dφ

dz0
+ Mσ (1 − sκz0)φ = − M2

z0(1 − z0)
, (E.8)
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where κ = k2/k1 and σ is now given by σ = k1s/
√

b1. This is just as singular as
Eq. (E.3), and so we perform the same manoeuvre and write φ = φ0 + φs , choosing
φ0 so that the term dφ0/dz0 cancels the right-hand side of Eq. (E.8). The equation
for φs then reads

dφs

dz0
+ Mσ (1 − sκz0)φs = M3σ (1 − sκz0) [ln z0 − ln(1 − z0)] . (E.9)

The right-hand side is now less divergent, and one can proceed as before to multiply
this equation by eMσ(z0−sκz20/2) and integrate twice. We find

T (z0) = −M2 [z0 ln(z0) + (1 − z0) ln(1 − z0)]

+ M3σ

∫ z0

0
dy e−Mσy(1−sκy/2)

{∫ y

0
dx(1 − sκx) ×

eMσx(1−sκx/2)
∫ y

0
[ln x − ln(1 − x)] − c3

}
, (E.10)

where the constant c3 is given by

c3 =
(∫ 1

0
dye−Mσy(1−sκy/2)

)−1 ∫ 1

0
dy e−Mσy(1−sκy/2)

×
∫ y

0
dx (1 − sκx) eMσx(1−sκx/2) [ln x − ln(1 − x)] .



Appendix F
Calculation of the Metapopulation Moran
Model Dynamics on the Slow Subspace

In this appendix some of the more technical aspects of finding the slow subspace
and calculating the dynamics of the reduced system will be set out. So far we have
only specified the natural variable which we use in the reduced system, that is z =∑D

i=1 u(1)
i xi .

More generally, we can define a linear transformation to the coordinate z and
D − 1 coordinates w such that

(
z
w

)
= T −1x, x = T

(
z
w

)
. (F.1)

A convenient choice for xi is

xi = z +
D−1∑
a=1

Qiawa . (F.2)

Since, from Eq. (4.22), xi = z on the centre manifold in the neutral case, we ask
that the wa are of order s on the slow subspace in the case with selection. This will
simplify our calculation because, as we will see, this means that we will only have
to calculate the wa as functions of z to leading order in s.

In terms of the transformation matrix T , the choices made so far mean that

T −1 =
( [u(1)]T

R

)
, T = (1 Q) , (F.3)

where R is a D − 1 by D matrix and Q is a D by D − 1 matrix. The form of the
matrices R and Q is restricted through the conditions T T −1 = T −1T = I , the
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identity matrix. The condition relevant if we are trying to express x in terms of z and
w, is

D∑
i=1

u(1)
i Qia = 0, a = 1, . . . ,D − 1. (F.4)

We will need to check that any choice we make for Qia satisfies this condition.
We now substitute the transformation (F.2) into Eq. (4.34) for the drift vector in

terms of x:

Ai (z,w) =
D∑

j=1

Hi j

⎛
⎝z +

D−1∑
a=1

Q jawa

⎞
⎠+ sz(1 − z)

D∑
j=1

Gi jα j

βi

+ s(1 − 2z)
D∑

j=1

Gi jα j

βi

D−1∑
a=1

Q jawa − s2z2(1 − z)
D∑

j=1

Gi jα
2
j

βi
+ O(s2y, s3).

(F.5)

Using (i)
∑D

j=1 Hi j z = z
∑D

j=1 Hi j = 0, from Eq. (4.16), and (ii) the slow subspace

condition
∑D

i=1 u(a+1)
i Ai = 0, a = 1, . . . ,D − 1 (see Eq. (4.21)), we find

0 =
D∑

i, j=1

D−1∑
a=1

u(a+1)
i Hi j Q jawa + sz(1 − z)

D∑
i, j=1

u(a+1)
i Gi jα j

βi
, (F.6)

since the slow subspace condition must be satisfied order by order in s and y is
assumed to be of order s. Choosing Q ja to be the right-eigenvectors v

(a+1)
j , a =

1, . . . ,D− 1, which is consistent with the conditions (F.4), we see that the first term
on the right-hand side of Eq. (F.6) is simply λ(a+1)wa . Therefore

wa(z) = − sz(1 − z)

λ(a+1)

D∑
i, j=1

u(a+1)
i Gi jα j

βi
+ O(s2). (F.7)

Substituting Eq. (F.7) into Eq. (F.5), the drift vector evaluated on the slow subspace
is found to be

Ai (z) = − sq(0)
i z(1 − z) + sq(1)

i z(1 − z) − s2q(2)
i z2(1 − z)

− s2q(3)
i z(1 − z)(1 − 2z) + O(s3), (F.8)
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where the vectors q0, q1, q2 and q3 are the parameter combinations

q(0)
i =

D−1∑
a=1

D∑
j,k,l=1

Hi jv
(a+1)
j u(a+1)

k Gklαl

βkλ(a+1)
,

q(1)
i =

D∑
j=1

Gi jα j

βi
, q(2)

i =
D∑

j=1

Gi jα
2
j

βi
,

q(3)
i =

D−1∑
a=1

D∑
j,k,l=1

Gi jα j

βi

v
(a+1)
j u(a+1)

k

λ(a+1)

Gklαl

βk
. (F.9)

The elements of the diffusion matrix meanwhile, when evaluated on the slow
subspace, have the form

Bii (z) = 2z(1 − z)
D∑

j=1

Gi j

β2
i

+ O(s). (F.10)

Since the matrix H is not in general symmetric, then the eigenvalues will not in
general be real. However since the entries of H are real, the eigenvalues will occur
in complex conjugate pairs, and the eigenvectors associated with an eigenvalue λ∗
will be the complex conjugates of those associated with λ. Since the expressions for
q(0)

i and q(3)
i in Eq. (F.9) take the form of sums over a, for each term which is not

real there will be another term added to it which is its complex conjugate. Thus q(0)
i

and q(3)
i are guaranteed to be real. Therefore, the procedure goes through whether

the eigenvalues are real or not. Of course, if there are complex conjugate pairs, the
corresponding ya cannot be interpreted as coordinates. However this interpretation
is not crucial to the method, and if one wishes, it is always possible to define real
coordinates by working with the real and imaginary parts of the eigenvalues and
eigenvectors.



Appendix G
The Probability of Fixation
in the Metapopulation Moran
Model with Selection

The probability of fixation in the reduced system, Q(z0), is found as the relevant
solution to Eq. (2.59). In the notation for the reduced metapopulation this reads

Ā(z0)

N

d Q

dz0
+ B̄(z0)

2N 2

d2Q

dz20
= 0, (G.1)

where z0 is the initial starting point on the centre manifold (or slow subspace). The
boundary conditions are as for the single island case, that is, Q(0) = 0 and Q(1) = 1.
In this appendix we discuss the analytic solution of Eq. (G.1) when Ā(z0) and B̄(z0)
are given by Eqs. (4.35) and (4.25).

The result for the neutral case and to linear order in s have the same form as in
the one-island case, and are well known [5]. When s = 0, Ā(z0) = 0, and so the
solution of Eq. (G.1) subject to the boundary conditions is simply Q(z0) = z0. At
linear order in s, Ā(z) = sa1z(1− z), and a straightforward integration of Eq. (G.1)
gives Eq. (2.100), albeit with extra factors of a1 and b1 and with x0 replaced by z0
(see Eqs. (5.17) and (5.11)).

To second order in s, Ā(z) may be written in the form (5.14), while B̄(z) is still
given by Eq. (4.25). The equation for the probability of fixation (G.1) now takes the
form

s

N
z0(1 − z0)(k1 − sk2z0)

d Q

dz0
+ 1

N 2 b1z0(1 − z0)
d2Q

dz20
= 0.

Integrating with respect to z0 we arrive at the equation

d Q

dz0
= c1 exp

[
− Ns

b1

(
k1z0 − sk2

2
z20

)]
,

where c1 is a constant of integration yet to be determined and where we note from
Eq. (4.26) that b1 > 0.
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If k2 = 0, the calculation is identical to that carried out to first order in s, Eq. (5.11),
but with a1 replaced by k1. If k2 �= 0, we may complete the square in the exponent
to find

d Q

dz0
= c1 exp

[
− Nk21
2b1k2

]
exp

[
N

2b1k2
(sk2z0 − k1)

2
]
.

We now change variables from z0 to l, where

l =
√

N

2b1|k2| (sk2z0 − k1), (G.2)

to obtain

d Q

dl
=
⎧⎨
⎩

−c2 exp (−l2), if k2 < 0

c2 exp (l2), if k2 > 0,
(G.3)

where

c2 = c1
s

√
2b1

|k2|N exp

{
− Nk21
2b1k2

}
, (G.4)

is another constant.
The integrals over the exponentials in Eq. (G.3) can be carried out in terms of

functions related to the error function, namely the complementary error function [1]

erfc(y) = 1 − erf(y) = 1 − 2√
π

∫ y

0
e−l2 dl, (G.5)

and the imaginary error function [4]

erfi(y) = 2√
π

∫ y

0
el2 dl. (G.6)

Implementing the boundary conditions Q(l(z0 = 0)) = 0 and Q(l(z0 = 1)) = 1,
one finds

Q(z0) = 1 − χ(z0)

1 − χ(1)
, (G.7)

where

χ(z0) = erfc(l(z0))

erfc(l(0))
, if k2 < 0, (G.8)

and

χ(z0) = erfi(l(z0))

erfi(l(0))
, if k2 > 0. (G.9)
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If l is large, then asymptotic forms can be used to simplify both the complementary
error function and the imaginary error function [1, 4]:

erfc(l) = e−l2

√
πl

[
1 + O

(
1

l2

)]
, (G.10)

and

erfi(l) = el2

√
πl

[
1 + O

(
1

l2

)]
. (G.11)
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